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Abstract. The practice of bringing together the concepts of ‘Newton poly-
topes’, ‘toric varieties’, ‘tropical geometry’, and ‘Gröbner bases’ has led to
the formation of stable and mutually beneficial connections between alge-
braic geometry and convex geometry. This survey is devoted to the current
state of the area of mathematics that describes the interaction and appli-
cations of these concepts.
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1. Introduction

This survey is devoted to the current state and interrelations between various
branches of algebraic and convex geometry, namely the theory of Newton polytopes,
geometry of toric varieties, and enumerative tropical geometry, as well as topics in
valuation theory and Gröbner bases. We briefly recall what this is all about.

1.1. Newton polytopes. Let V be an irreducible algebraic variety whose points
φ ∈ V parameterize an algebraic family of varieties Nφ. Then the simplest discrete
invariants of Nφ (the number of components, dimension, degree, Euler characteris-
tic, genus, and so on) turn out to be constructive functions of φ on V (that is, finite
linear combinations of the characteristic functions of algebraic subvarieties of V ).
In particular, every such an invariant takes the same value on almost all elements
of the family (that is, for all φ in a Zariski open subset of V ), which is referred to
as the value of the given invariant at a generic element of the family.

In particular, a family of ‘polynomials with indeterminate coefficients’ arises nat-
urally in many situations. Namely, we fix a finite set A of monomials in x1, . . . , xn

and consider the space CA of all linear combinations of these monomials with com-
plex coefficients. The following family of algebraic varieties is naturally related
to such data: the parameter space VA = CA ⊕ · · · ⊕ CA is the space of k-tuples
φ = (φ1, . . . , φk) of polynomials consisting of these monomials, and the element
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of the family corresponding to a point φ is the variety Nφ = {x | φ1(x) = · · · =
φk(x) = 0}, that is, the set of solutions of the system of equations φ = 0. For
example, the family of all algebraic hypersurfaces of fixed degree in Cn is of this
type. The invariants of a generic element of such a family are important objects
to be studied. For example, according to the fundamental theorem of algebra, if
n = k = 1 and A = {x0, x1, . . . , xd}, then a generic element of VA consists of d
points.

Over time it was observed that the algebro-geometric invariants of a generic
element of VA are naturally related to the geometric invariants of the following
polytope. Identifying the monomial xa = xa1

1 · · ·xan
n with the point a = (a1, . . . , an)

in the integer lattice Zn, we regard the given set A of monomials as a subset
of Zn and define its Newton polytope as the convex hull convA. The theory of
Newton polytopes studies the invariants of the set of solutions of a generic system
of equations φ = 0 with a prescribed set A of monomials in terms of the invariants of
the Newton polytope convA.

All the invariants mentioned above have been studied from this point of view
since the 1970s; see [42], [4], [35], [64], and [40]. We recall these results in § 2.2.
Moreover, the resulting connection between algebraic and convex geometry proved
to be useful not only for algebraic geometry, but also for convex geometry. For
example, it was used to obtain algebro-geometric proofs and generalizations of such
fundamental facts in convex geometry as the upper bound conjecture [57], [58] and
the Aleksandrov–Fenchel inequality [61], [36].

Since the Newton polytope of a polynomial (that is, the convex hull of its
monomials) appears to be an important invariant of this polynomial, we naturally
encounter the problem of computing this polytope for various ‘universal’ polyno-
mials, first and foremost for resultants and discriminants. This problem was solved
in [21] and [59]. We recall the solution in § 3.3 and further on.

1.2. Toric varieties. An important tool in the geometric study of objects of
any nature (continuous, smooth, analytic, algebraic) is the concept of a variety,
that is, the result of gluing together affine charts by means of gluing maps of
appropriate regularity (continuous, smooth, analytic, polynomial). In particular,
in the theory of Newton polytopes, where the fundamental class of functions is
the set of monomials, it is useful to consider varieties whose gluing maps send
monomials to monomials, that is, the coordinate representations of the gluing maps
are themselves given by monomials. Such varieties are said to be toric. These are
exactly those acted on by the complex torus T = (C \ {0})n = (C∗)n with a dense
orbit. We recall the definition and the structure of toric varieties in § 2.3.

1.3. Tropical geometry. The union of the set of real numbers and an ele-
ment −∞ is a semifield with respect to the additive operation max and the mul-
tiplicative operation +. This is called the tropical semifield and is denoted by T.
One can develop algebraic geometry over it, called tropical algebraic geometry. This
geometry is important because, on the one hand, it deals with purely combinatorial
objects (piecewise linear sets and functions) and, on the other hand, its answers to
many questions are the same as in ‘regular’ geometry. Thus, the very presence of
such coincidence may give combinatorial answers to complex questions in algebraic
geometry. Every such fact is referred to as a ‘tropical correspondence theorem’.
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The first correspondence theorem which demonstrated the practical importance
of tropical algebraic geometry was Mikhalkin’s theorem on the coincidence of the
Gromov–Witten invariants of the complex plane and the tropical plane. It states
that the number of complex algebraic curves of fixed genus and degree passing
through a prescribed generic set of points in the complex projective plane is equal
to the analogous quantity (appropriately defined) for tropical objects. We recall
this in § 3.2.

Proofs of such facts are based on the existence of a tropical analogue (tropical-
ization) of any algebraic variety. This correspondence is complicated and can be
looked at and formalized from various points of view:

– geometric tropicalization, closely related to the concepts of the Bergman cone,
universal Gröbner basis, and non-Archimedean amoeba;

– Berkovich analytification of algebraic varieties;
– transition to the fundamental class of a variety in the ring of conditions.
We recall the first construction in §§ 4 and 5, omit the second, and give more

details on the third one in §§ 4 and 6 since, as far as we know, the third construction
is not as well covered in the literature as the others.

1.4. The ring of conditions. If U and V are subvarieties of complementary
dimension in the complex torus T = (C \ {0})n, then the shift gU intersects V at
the same number of points for almost all g ∈ T , called the intersection number of U
and V and denoted by U ◦ V . Two subvarieties of equal dimension are said to be
numerically equivalent if they have the same intersection number with any variety
of complementary dimension. We define a k-cycle in T to be a finite formal linear
combination of subvarieties of codimension k with integer coefficients. The quotient
of the space of k-cycles with respect to numerical equivalence is denoted by Ck. The
direct sum

⊕
k

Ck has the natural structure of a ring with the operation of formal

sum of k-cycles and the following intersection-product operation: the product of
the classes of subvarieties U, V ⊂ T is the class of the subvariety gU ∩V with a shift
by a generic element g ∈ T .

This definition was first introduced in [11] for other symmetric spaces and then
generalized to arbitrary spherical varieties (in particular, arbitrary reductive groups,
including the complex torus). It is based on the non-trivial fact that the class of
gU ∩ V is the same for any generic element g ∈ T . Generally speaking, this is
not the case for homogeneous spaces with the action of a non-reductive group. For
example, if we replace T by the additive group C3, then the classes of lines in C1 are
equal only for parallel lines. Hence the intersection gU∩V of the plane U = {y = 0}
and the hyperbolic paraboloid V = {xy = z} is the line y = g2, g2x = z, whose
class in C1 depends continuously on the choice of the shift g2.

In § 7 we demonstrate that an analogue of the ring of conditions can be con-
structed for a certain natural class of analytic subvarieties of Cn. However, when
studying tropical geometry and Newton polytopes, we are mostly interested in the
ring of conditions C of the complex torus T = (C\{0})n. For us it plays a role simi-
lar to that of the cohomology ring. Knowing the fundamental classes of subvarieties
in the cohomology classes of a compact manifold, one can find their intersection
numbers in terms of the product operation in this ring. The same holds for the
fundamental classes of subvarieties of T in the ring of conditions. Moreover, we
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show in § 4.3 that the subvarieties of the complex torus have characteristic classes
with values in the ring of conditions.

The customary way to develop intersection theory on a topological manifold or an
algebraic variety is to consider its cohomology ring or Chow ring. But these rings are
too small for many important non-compact manifolds (in particular, homogeneous
spaces), and one needs an appropriate compactification to cure this. An important
alternative to this approach for homogeneous spaces is to consider their rings of
conditions. These rings generalize Schubert calculus to a wide class of non-compact
homogeneous spaces. We mainly use the approach based on the ring of conditions
of the torus (C \ {0})n. The definition of the Chow ring of an algebraic variety will
be recalled in § 4.1.5 for completeness.

1.5. Tropicalization of subvarieties of the torus. It turns out that the ring of
conditions C admits a tropical correspondence. If we replicate its definition over the
tropical semifield T correctly, the resulting ring TC of combinatorially-geometric
nature (called the ring of tropical fans) turns out to be naturally isomorphic to C.

The ring TC has a purely combinatorial definition. A k-dimensional tropical
fan is a union of k-dimensional polyhedral cones endowed with integer weights
which satisfy a balancing condition (see § 4.2.2). Hence the natural isomorphism
between C and TC provides a combinatorial model of the ring of conditions C
of the complex torus. (It is important to note that there are still no satisfactory
combinatorial models for the rings of conditions of arbitrary reductive groups.)

Thus the fundamental class of a k-dimensional subvariety V ⊂ T in the ring of
conditions C is naturally associated with an element of the ring TC, a k-dimensional
tropical fan referred to as the tropicalization of V .

1.6. Tropical compactifications. To calculate the tropical fan of a given k-
dimensional variety V it suffices to construct its tropical compactification, that is,
a toric compactification such that the closure of V intersects all the orbits properly.
(We recall that varieties U and V intersect each other properly if codim(U ∩ V ) =
codimU + codimV .) It turns out that the toric variety corresponding to a fan Σ
gives a tropical compactification of V if and only if the tropical fan of V is part of
the k-dimensional skeleton of Σ.

In particular, each cone Γ in the tropical fan of V corresponds to an orbit O of
codimension k in the tropical compactification. The weight of Γ in the tropical fan
turns out to be equal to the intersection number of the closure of V with O (which
is well defined since the intersections with orbits are proper).

In particular, when V is a hypersurface with equation φ = 0, knowing its trop-
icalization is equivalent to knowing the Newton polytope N of the polynomial φ
since its tropical compactification is given by the toric variety corresponding to N .
The tropical fan of the hypersurface is the set of all exterior normals to the edges
of N , the cone of all exterior normals to an edge E being endowed with a weight
equal to the lattice length of E. In this sense, the concept of tropicalization gen-
eralizes that of Newton’s polytope from hypersurfaces to arbitrary subvarieties of
the complex torus.

1.7. Bergman cone, universal Gröbner basis, non-Archimedean valua-
tions. When an algebraic subvariety V of the complex torus (C\{0})n is given by
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a system of equations, there are purely algebraic ways to describe the tropical com-
pactification and the tropical fan of V in terms of the defining system of equations
or, more precisely, the ideal I generated by it. These techniques had been known
long before the birth of tropical algebraic geometry.

On the one hand, each vector v = (v1, . . . , vn) ∈ Qn determines a valuation of the
ring of Laurent polynomials in n variables (endowing the variable xi with weight vi).
The tropical fan of V (as a set, without weights) consists of all valuations v ∈ Qn

such that the principal part inv I of the ideal I is non-trivial. A related object is the
Bergman cone, which had been studied long before the creation of tropical algebraic
geometry. We recall that for every valuation there is the so-called Gröbner basis,
a finite system of generators fi of the ideal I whose principal parts in fi generate
inv I. Moreover, there is a universal Gröbner basis, a finite system of generators
which is a Gröbner basis for all valuations simultaneously. This is why the Bergman
cone is indeed a piecewise linear set.

On the other hand, if we extend the field of scalars from C to the field S of
Puiseux series, then to each point φ = (φ1, . . . , φn) ∈ (S \ {0})n of V over the new
field (that is, the germ of an analytic curve φ : U → V , where U ⊂ C is a small
punctured neighbourhood of the origin) there corresponds a valuation v ∈ Qn whose
value at a Laurent polynomial f is equal to the order of zero (or a pole) of f ◦ φ
at the origin. The tropical fan of V (as a set of points, without weights) consists
of the valuations of all the points of V over the field of Puiseux series. Therefore,
it is also referred to as a non-Archimedean amoeba in view of the obvious analogy
with the definition of the classical amoeba.

Both approaches to the algebraic calculation of the tropicalization of a given
subvariety will be discussed in detail in § 5.

1.8. Connections with real algebraic geometry. Closely related to the the-
ory of Newton polytopes is Viro’s patchworking construction, which has found
important applications in questions connected with Hilbert’s 16th problem (see,
in particular, [65] and [26]). This construction can also be stated in the language
of tropical geometry, and the support of the tropical fan of a complex algebraic
variety V can be represented as the limit of the set (the amoeba of V )/t as t→∞
(see, for example, [9]).

The first key applications of tropical algebraic geometry were related specifically
to applying the idea of patchworking to new questions in real algebraic geometry,
in particular, to the study of Welschinger invariants [47] and Horn’s problem on
Hermitian matrices [56]. We are not going to cover these issues, which are somewhat
outside the main topics of our survey.

2. Newton polytopes and toric varieties

2.1. Mixed volume. Let V be a real n-dimensional vector space with fixed vol-
ume form µ. Minkowski [49] introduced the following notions.

Definition 2.1.1. The Minkowski sum of convex bodies A,B ⊂ V is the convex
body

A+B = {a+ b | a ∈ A, b ∈ B}.
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The mixed volume is a function

MV: {n-tuples of convex bodies in V } → R

which is symmetric and linear with respect to all n arguments and satisfies the
equality MVµ(A, . . . , A) = n! VolµA for every convex A ⊂ V .

When the volume form is clear from the context, we omit it from the notation
for the mixed volume. The existence of mixed volume and the assertions below
were proved, for example, in [17] and [51]. Uniqueness follows from the following
assertion.

Assertion 2.1.2. The equality

MV(A1, . . . , An) =
∑

1⩽i1<···<ik⩽n

(−1)n−k Vol(Ai1 + · · ·+Aik
)

holds.

Mixed volume is monotone with respect to each argument.

Assertion 2.1.3. If B ⊂ C , then

MV(B,A2, . . . , An) ⩽ MV(C,A2, . . . , An).

Example 2.1.4. Let A and B be the horizontal and vertical unit intervals in R2

with the standard volume form. Then

A+B = [0, 1]× [0, 1] and MV(A,B) = 1.

Mixed volume is non-negative, and it is easy to describe all the bodies with
mixed volume 0.

Definition 2.1.5. The codimension of an m-tuple of bodies A1, . . . , Am is the
minimum of k − dim(Ai1 + · · ·+Aik

) over all subsets 1 ⩽ i1 < · · · < ik ⩽ m.

This definition admits the empty set, which means that the codimension is always
non-positive.

Assertion 2.1.6. The mixed volume of a tuple of bodies is equal to zero if and only
if the codimension of the tuple is negative.

Mixed volume is multiplicative in the following sense.

Assertion 2.1.7. If A1, . . . , Ak can be placed in a k-dimensional subspace U ⊂ V
by parallel translations, then

MVµ(A1, . . . , An) = MVµ′(A1, . . . , Ak) MVµ′′(πAk+1, . . . , πAn),

where π : V → V/U is the natural projection and µ′′ = µ/µ′ .

Here the mixed volume of A1, . . . , Ak as subsets of U is well defined since mixed
volume is invariant under parallel translations of the components. The most impor-
tant analytic result concerning mixed volume is the Aleksandrov–Fenchel inequality
(see [2]).
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Assertion 2.1.8. The following inequality holds for all Ai , B , and C :

MV(B,B,A3, . . . , An) MV(C,C,A3, . . . , An) ⩽ MV(B,C,A3, . . . , An)2.

The classification of cases when this inequality becomes an equality is still an
open problem.

An important role in applications to algebraic geometry is played by lattice mixed
volume. Let L be a lattice and let V = L⊗R be a vector space of dimension n. We
write VolB for the volume of a measurable set B ⊂ V with respect to the lattice
volume form (such that the volume of the real torus V/L is equal to n!). A subspace
U ⊂ V is said to be rational if dimU = dim(U∩L). Speaking of volume in a rational
subspace U or in the quotient V/U , we always mean the lattice volume form with
respect to the lattice U ∩ L or L/(U ∩ L), respectively.

A polytope in V is called a lattice polytope if it is the intersection of finitely
many half-spaces with rational boundaries and all its vertices lie in L. The mixed
volume associated with the lattice volume form is called the lattice mixed volume
in V .

Assertion 2.1.9. The lattice mixed volume of any lattice polytope is an integer.

This is a consequence, for example, of the following explicit formula for the mixed
volume, where I(A) stands for the number of lattice points in a polytope A.

Assertion 2.1.10. For any bounded lattice polytopes A1, . . . , An ,

MV(A1, . . . , An) =
∑

0⩽k⩽n, 1⩽i1<···<ik⩽n

(−1)n−kI(Ai1 + · · ·+Aik
),

where I(∅) is set to be 1.

The following formula is a useful tool for calculating the mixed volume of poly-
topes.

Definition 2.1.11. The support function of a closed set A ⊂ V is a continuous
function A( · ) : V ∗ → R ∪ {+∞} given by A(γ) = supa∈A γ(a). The support face
for an element γ ∈ V ∗ is the subset Aγ ⊂ A on which the linear function γ attains
its maximum value, that is, Aγ = {a ∈ A | γ(a) = A(γ)}.

For polytopes the support function is piecewise linear and every face is the
support face for some γ. The faces of a finite set A are exactly the intersections
of A with the faces of the convex hull of A.

Assertion 2.1.12. For every bounded convex body A1 and for all bounded lattice
polytopes A2, . . . , An ,

MV(A1, . . . , An) =
∑

primitive γ∈L∗

A1(γ) MV(Aγ
2 , . . . , A

γ
n).

We note that the (n−1)-dimensional lattice mixed volume on the right-hand side
is well defined since the faces Aγ

2 , . . . , A
γ
n can be positioned by parallel translations

in the (n−1)-dimensional rational subspace ker γ, and the sum is well defined since
all but finitely many terms are equal to zero (the non-zero terms correspond to
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those γ which are support functions of the facets of the sum A1 + · · · + An). For
example, when A1 = · · · = An = A ∋ 0, this becomes a formula for calculating the
volume of A by partitioning A into pyramids with vertices at the origin and with
the facets of A as their bases, the volume of each pyramid being one nth of the
base volume times the height:

VolA =
∑

primitive γ∈L∗

A(γ) VolAγ .

Example 2.1.13. The mixed volume of the standard cube [0, 1]3 and two copies
of the standard simplex in R3 is obviously equal to 3 by the above formula (the
only non-zero term corresponds to γ = (1, 1, 1)).

Covolume is also important for connections with algebraic geometry.

Definition 2.1.14 ([14], [15]). Let C ⊂ V be a convex cone (that is, a convex set
with R+ · C = C). Then the convex bodies B ⊂ C with bounded C \ B form
a semigroup PC with respect to the Minkowski sum. The volume of C \ B is
called the covolume coVolB. Mixed covolume is the unique symmetric multilinear
function MVC : PC × · · · × PC︸ ︷︷ ︸

n

→ R such that MVC(B, . . . , B) = n! coVolB for

every B ∈ PC .

Note that this definition is meaningful only when the cone C has full dimension n
and is strictly convex (that is, contains no line). A more general definition for an
arbitrary C was given in the papers cited in Definition 2.1.14.

The following inversion of the Aleksandrov–Fenchel inequality holds for covolume
([41]; see also [18] in a special case related to hyperbolic geometry).

Theorem 2.1.15. For any Ai, B,B
′ ∈ PC ,

MVC(B,B,A3, . . . , An) MVC(B′, B′, A3, . . . , An) ⩾ MVC(B,B′, A3, . . . , An)2.

One can calculate mixed covolumes of polytopes by analogy with volumes.

Assertion 2.1.16. Let A1, . . . .An ∈ PC be lattice polytopes. Then

MVC(A1, . . . , An) =
∑

primitive γ∈C∗∩L∗

A1(γ) MV(Aγ
2 , . . . , A

γ
n),

where C∗ =
{
γ | γ

∣∣
C
> 0

}
⊂ V ∗ is the open cone dual to C .

2.2. Newton polytopes. The lattice points a = (a1, . . . , an) ∈ Zn will be inter-
preted as monomials xa = xa1

1 · · ·xan
n . Given a finite set A ⊂ Zn of monomials, we

consider the space CA =
{ ∑

a∈A

cax
a

∣∣ ca ∈ C
}

of their linear combinations. We

regard a Laurent polynomial φ ∈ CA as a function φ : (C \ {0})n → C (generally
speaking, it is undefined on the coordinate planes xi = 0 since ai may be negative
for some a = (a1, . . . , an) ∈ Zn). The restriction of a polynomial φ(x) =

∑
a∈A

cax
a

to a subset B ⊂ Rn is the polynomial φ(x)|B =
∑

a∈A∩B

cax
a.
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Theorem 2.2.1 (Kushnirenko–Bernstein formula [4]). Let A1, . . . , An ⊂ Zn be
finite sets and let φi ∈ CAi be generic polynomials. Then the number of solu-
tions x ∈ (C \ {0})n (with multiplicity accounted for) of the system φ1(x) = · · · =
φn(x) = 0 is equal to the lattice mixed volume of the convex hulls of A1, . . . , An .
The following condition is sufficient for genericity: given any non-zero linear func-
tion γ : Zn → Z, the system φ1(x)|Aγ

1
= · · · = φn(x)|Aγ

n
= 0 has no solutions

in (C \ {0})n .

Example 2.2.2. A well-known particular case of this theorem is Bézout’s theorem,
asserting that generic polynomials of degrees d1, . . . , dn in n variables have d1 · · · dn

solutions.

Remark 2.2.3. (i) In the statement of Theorem 2.2.1, genericity means that there
is a Zariski open subset U ⊂

⊕
i

CAi such that the stated equality holds for every

element (φ1, . . . , φn) of U . In particular, the explicit condition for the system of
equations stated in the theorem is a generic property.

(ii) Theorem 2.2.1 illustrates the importance of the following notion. The faces of
convex polytopes (or convex hulls of finite sets) Ai ⊂ Rn are said to be compatible
if they can be represented as (the convex hulls of) Aγ

i for some linear function
γ : Rn → R. Here is an equivalent definition for bounded polytopes. Their faces
are said to be compatible if their Minkowski sum is a face of the sum

∑
i

Ai. (For

unbounded polytopes such a reformulation is impossible.)
(iii) The number of solutions with multiplicity can be understood as the dimen-

sion of the quotient C[x±1
1 , . . . , x±1

n ]/⟨φ1, . . . , φn⟩ over C (accordingly, the absence
of solutions means that this quotient is trivial). This version of Theorem 2.2.1 holds
over any algebraically closed field of characteristic 0.

(iv) It is customary to state Theorem 2.2.1 differently. The convex hull of
all the monomials occurring in the polynomial φi is called its Newton polytope,
and the number of common roots in (C \ {0})n of generic polynomials with pre-
scribed Newton polytopes is asserted to be equal to the mixed volume of the Newton
polytopes. In this case, the polynomials φi(x)|Aγ

i
occurring in the genericity con-

dition are simply the leading non-zero homogeneous components of φi in the sense
of quasi-degree (when the weight of a monomial xa is γ(a)). However, we note
that the traditional statement is weaker than the one above. In applications, it
is sometimes important to use the theorem with φi ∈ CAi such that the convex
hull of Ai is strictly larger than the Newton polytope (this need not contradict the
genericity condition stated in the theorem).

Given any sets A1, . . . , An ⊂ Rn, we denote the mixed volume of their convex
hulls by the formal product A1 · · ·An. The value of a power series f(y) =

∑
a∈Zk

+

cay
a

on a k-tuple of finite sets A1, . . . , Ak ⊂ Rn is defined to be∑
a1+···+ak=n

caA
a1
1 · · ·Aak

k .
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Theorem 2.2.4 [35]. Let A1, . . . , Ak ⊂ Zn be finite sets and let φi ∈ CAi be generic
polynomials. Then the Euler characteristic of the set of solutions x ∈ (C \ {0})n of

the system φ1(x) = · · · = φk(x) = 0 is equal to
A1 · · ·Ak

(1 +A1) · · · (1 +Ak)
. The following

condition is sufficient for genericity: given any linear function γ : Zn → Z, zero is
a regular value of the map (φ1|Aγ

1
, . . . , φk|Aγ

k
) : (C \ {0})n → Ck .

Remark 2.2.5. The expression
A1 · · ·Ak

(1 +A1) · · · (1 +Ak)
, which provides the answer,

is the value at A1, . . . , Ak of the power series expansion of the rational func-
tion

s1 · · · sk

(1 + s1) · · · (1 + sk)
at the origin. For zero-dimensional complete intersections

(k = n), the result becomes the Kushnirenko–Bernstein formula without multiple
roots. For curves (k=n−1) the Euler characteristic is equal to −MV(A1, . . . , An−1,
A1 + · · ·+An−1). For hypersurfaces (k = 1), it is equal to (−1)n−1n! VolA1.

A similar fact is also known for germs of analytic functions. Given any I ⊂
{1, . . . , n}, we denote the coordinate subspace {xi = 0 for i /∈ I} by RI ⊂ Rn,
the positive octant {xi ⩾ 0 for i ∈ I and xi = 0 for i /∈ I} by RI

+, the intersection
B∩RI with any set B ⊂ Rn by BI , and the |I|-dimensional lattice mixed covolume
MVRI

+
(BI

1 , . . . , B
I
|I|) by BI

1 · · ·BI
|I|.

Definition 2.2.6. The Newton polytope Nf of a germ f ∈ C[[x1, . . . , xn]] is the
convex hull of the union of a + Rn

+ over all a ∈ Zn such that the monomial xa

occurs with a non-zero coefficient in f . We say that Nf is convenient if it has
a common point with every coordinate axis. The Newton diagram ∆f is the union
of all bounded faces of the Newton polytope Nf . The restriction f

∣∣
∆f

is called the
principal part of f . Given any linear function γ ∈ (Rn

+)∗, we write fγ for the first
non-zero homogeneous (in the sense of the quasi-degree deg xa = γ(a)) component
of the series f (note that it depends only on the principal part of f).

Theorem 2.2.7. Suppose that the germs of analytic functions

(f1, . . . , fk) : (Cn, 0) → (Ck, 0)

have convenient Newton polytopes A1, . . . , Ak and their principal parts satisfy the
following genericity condition: zero is a regular value of the polynomial map
(fγ

1 , . . . , f
γ
k ) : (C \ {0})n → Ck for every γ ∈ (Rn

+)∗ . Then the equations f1 = · · · =
fk = 0 determine an isolated singularity of the complete intersection at the origin,

the Milnor number of which is equal to (−1)n−k
∑

I⊂{1,...,n}

AI
1 · · ·AI

k

(1 +AI
1) · · · (1 +AI

k)
,

where the term with I = ∅ is equal to 1 by definition.

An equivalent formula was obtained in [1] in the case k = n without using the
notion of mixed covolume.

Theorem 2.2.7 generalizes to the monodromy ζ-function of the germ f1 on the
variety f2 = · · · = fk = 0. To state this generalization, we define the following
expression for polytopes A1, . . . , Ak ∈ PRk

+
:

tA1 ·A2 · · ·Ak =
∑

primitive γ∈Zn
+

MV(Aγ
2 , . . . , A

γ
n) log

(
1− tA1(γ)

)
.
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By Assertion 2.1.16, the exponent of this expression is a polynomial of degree
A1 · · ·Ak. The notation tA1 · φ(A2, . . . , Ak), where φ is an arbitrary power series,
has similar meaning.

Theorem 2.2.8 ([64] for k = 1 and [50]). Under the hypotheses of the previous the-
orem, the logarithm of the characteristic polynomial of the cohomology monodromy
of the Milnor fibration of f1 on the complete intersection f2 = · · · = fk = 0 is equal
to

(−1)n−k
∑

I⊂{1,...,n}

tA
I
1 ·AI

2 · · ·AI
k

(1 +AI
1) · · · (1 +AI

k)
,

where the term with I = ∅ is equal to log(1− t) by definition.

2.3. Toric varieties and polytopes.

2.3.1. Motivational example. It was discovered in [34] that toric varieties help in
proving the assertions of § 2.2 because they give smooth compactifications and res-
olutions of generic objects studied therein.

We give a model example. Let f =
∑
a∈N

cax
a be a generic Laurent polynomial

in two variables with Newton polytope N ⊂ Q2. We wish to construct a smooth
compactification of the curve C = {f = 0} ⊂ (C \ {0})2. The simplest compactifi-
cation (the closure of C in (C \ {0})2 ⊂ CP2) appears to be smooth only for a few
polytopes N .

To construct a smooth compactification, we write CPN for the projective space
whose standard coordinates ya are labelled by the lattice points a ∈ N and consider
the embedding j : (C \ {0})2 → CPN sending any x ∈ (C \ {0})2 to the point with
homogeneous coordinates ya = xa = xa1

1 x
a2
2 . It turns out that if the coefficients

of f are generic (in the sense of Remark 2.2.3), then the closure of the image of C
under j is smooth.

This compactification of C is said to be toric, and the closure of the image
j
(
(C\{0})2

)
⊂ CPN of the complex torus is called the toric variety XN . Identifying

the torus (C \ {0})2 with its image j
(
(C \ {0})2

)
⊂ XN , we can regard XN as

a compactification of the torus (C \ {0})2. Then we can forget about the ambient
space CPN and define the toric compactification of C as the closure of C in the
toric variety XN ⊃ (C \ {0})2 ⊃ C.

Some of the above assertions need a slight correction when we pass from the
two-dimensional case to many dimensions. In particular, there are three-dimensional
polytopes N such that j is not an embedding or the closure of j(C) is not smooth.
This correction follows naturally from the information about toric varieties that
will be briefly recalled below.

2.3.2. The notion of toric variety. A toric variety is an (irreducible) n-dimensional
algebraic variety X acted on by the complex torus T ≃ (C \ {0})n in such a way
that one of the orbits is (Zariski) dense in X. In this definition X is often assumed
to be normal, but we do not make this assumption.

Toric varieties (X1, T1) and (X2, T2) are said to be isomorphic if there is a pair
of isomorphisms X1 → X2 and T1 → T2 compatible with the actions of Ti on Xi.
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Toric varieties (X1, T ) and (X2, T ) are said to be canonically isomorphic if there is
an isomorphism X1 → X2 compatible with the actions of T on Xi.

In what follows we explicitly construct a projective toric variety XA correspond-
ing to an arbitrary finite set A ⊂ Zn. We also construct a normal toric variety XΣ

corresponding to an arbitrary fan Σ (a fan is a piecewise linear combinatorial object
to be defined below).

These constructions are important because of their universality: every projec-
tive (resp. normal) toric variety is isomorphic to XA for an appropriate A (resp.
isomorphic to XΣ for an appropriate Σ).

Remark 2.3.1. It is important to separate the problem of describing the isomor-
phism classes of toric varieties (with a full answer given below) from the much
more delicate problem of describing the group of abstract automorphisms of a toric
variety and its orbits (by an abstract automorphism we mean an automorphism of
the algebraic variety that is not necessarily compatible with the torus action) as
well as from the open problems on diffeomorphisms of toric varieties (in particular,
on their cohomological rigidity). These extensively developing areas of research
require separate surveys and are not covered here.

2.3.3. The projective toric variety XA. Given a finite set A, we write CPA for the
standard (|A|−1)-dimensional projective space whose homogeneous coordinates ya

are labelled by the elements a ∈ A. To every subset B ⊂ A there corresponds
a coordinate subspace CPB = {ya = 0 for a /∈ B} ⊂ CPA containing the standard
complex torus (C \ {0})B = {ya ̸= 0 for a ∈ B and ya = 0 for a /∈ B}.

Let L be the lattice of characters of the n-dimensional complex torus T . If we fix
a coordinate system T ≃ (C\{0})n and the corresponding coordinates L ≃ Zn, then
the value of a character a ∈ L at a point x ∈ T is the monomial xa = xa1

1 · · ·xan
n .

Hence we can also denote this value by xa regardless of coordinates.

Definition 2.3.2. The toric variety XA corresponding to a finite subset A ⊂ L
is the closure in CPA of the image of the homomorphism jA : T → (C \ {0})A

sending any x ∈ T to the point with homogeneous coordinates ya = xa, a ∈ A. The
action of the torus T on XA is defined to be the composite of the homomorphism
jA : T → (C \ {0})A and the standard action of (C \ {0})A ⊂ CPA on CPA by
coordinate-wise product.

The kernel kerA of jA, equal to {x | xa = xb for all a, b ∈ A} by construction,
can be non-trivial. This happens if and only if A can be positioned in a proper
sublattice of L by a parallel translation. In particular, the dense orbit in XA, which
is equal to jA(T ) = XA ∩ (C \ {0})A, can be identified with the quotient T/ kerA.
Hence the dimension of XA is equal to that of the convex hull of A.

However, we note that the toric variety XA does not change under parallel trans-
lations of A (that is, XA = XA+a for every a ∈ L) or under changes of the ambient
lattice (that is, XA = XB if B ⊂ L′ is the image of A under an embedding of
lattices L ⊂ L′). Therefore, every projective toric variety can be represented in
the form XA, where A cannot be shifted to a proper sublattice of L by a parallel
translation.

Remark 2.3.3. (i) In view of the aforesaid, we can and will always assume without
loss of generality that A cannot be shifted to a proper sublattice of L by a parallel
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translation. In this case kerA is trivial, dimXA = dimL, and T can be identified
with a dense orbit in XA.

(ii) The set of lattice points of a lattice polytope P can often be taken as A.
However, it is important to remember that in dimension n ⩾ 3 there are polytopes
P ⊂ Zn whose set of lattice points P ∩ Zn does not satisfy the assumption in (i).
The simplest example is the Reeve tetrahedron, which contains no lattice points
except for the vertices (0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, k), k > 1.

(iii) A polytope whose set of lattice points cannot be moved to a proper sublattice
by a parallel translation is said to be a spanning or reduced polytope. In accordance
with (i), we consider only reduced polytopes in what follows.

2.3.4. Limit points of curves in XA. Since XA is compact, limt→0 jA(φ(t)) is con-
tained in XA for every analytic curve germ φ : (C \ {0}) → T . Conversely, every
point of XA can be represented as such a limit. This is similar to the representa-
tion of infinitely remote points in a projective space by the pencils of parallel lines
passing through them. To complete this useful analogy, we find the coordinate tori
(C \ {0})B of the projective space CPA =

⊔
B⊂A

(C \ {0})B which contain the limit.

Let L∗ be the lattice dual to the lattice of characters of T . It is called the lattice
of one-parameter subgroups. Indeed, for every point l of L∗ there is a one-parameter
subgroup ψ : C \ {0} → T uniquely determined by ψ(t)a = tl(a) for every a ∈ L. If
we choose coordinates T ≃ (C \ {0})n and L∗ ≃ Zn, then ψ(t) = tl = (tl1 , . . . , tln)
is a Veronese curve. Thus, we denote this one-parameter subgroup by tl regardless
of coordinates. When speaking of the one-parameter subgroup tl considered only
for small values of t, we use the term semi-one-parameter.

Using this notation, any analytic curve germ φ : C \ {0} → T can be written as

φ(t) =
φ̃(t)
tl

,

where φ̃(0) ∈ T is well defined, and the division is understood in the sense of
the group operation on T . Indeed, if we choose coordinates T ≃ (C \ {0})n and
L∗ ≃ Zn, then the coordinates li of the covector l should be equal to the degrees
of the leading monomials in the Laurent expansions of the components φi(t) of the
curve φ(t), that is, l = degφ. Thus, we denote l by degφ regardless of coordinates.

Using the notation in Definition 2.1.11 for the support face Al and the support
function A(l), we can write the homogeneous coordinates ya of the limit point

lim
t→0

jA(φ(t)) = lim
t→0

jA

(
φ̃(t)
tl

)
in the following form after multiplying by tA(l) at the same time:

ya = lim
t→0

tA(l)−l(a)φ̃(t)a =

{
φ̃(0)a if l(a) = A(l),
0 if l(a) < A(l).

(2.1)

Corollary 1. The limit point of every analytic curve germ φ : C \ {0} → T belongs
to the coordinate torus (C \ {0})Adeg φ ⊂ CPA. Moreover, since it follows from the
valuation criterion for completeness that every point of XA can be represented as
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the limit of an analytic curve germ φ : C \ {0} → T , the coordinate tori (C \ {0})B

for other subsets B ⊂ A contain no point of XA.

Corollary 2. Every point XA can be written as the limit of a shifted semi-one-
parameter group c/tl, c ∈ T , l ∈ L∗. Two shifted semi-one-parameter groups c/tl
and c′/tl

′
tend to the same point if and only if

Al = Al′ and
c

c′
∈ kerAl .

This enables us to represent points inXA as classes of shifted semi-one-parameter
groups with respect to the equivalence relation above. This is similar to representing
points in a projective space by pencils of lines.

2.3.5. The partition of XA into orbits. By construction, orbits in XA are inter-
sections of XA with orbits of the standard action of (C \ {0})A on CPA, that is,
with complex tori (C \ {0})B . However, the above corollaries which follow from
(2.1) show that such an intersection (C \ {0})B ∩ XA is non-empty only when B
is a face of A, that is, the intersection of A with a face of its convex hull. Thus,
the variety XA is subdivided into orbits TB = (C \ {0})B ∩XA = jB(T ) ≃ T/ kerB

over all faces B ⊂ A, and we have dimTB = dimB. Note that this correspondence
between the faces of A and the orbits of XA preserves adjacency. Moreover, the
closure of TB in XA can naturally be identified with the toric variety XB .

2.3.6. Covering XA by charts. We write Ma ≃ C|A|−1 for the affine chart of CPA

given by the condition ya ̸= 0. The variety XA is covered by the charts XA ∩Ma,
a ∈ A, which are affine varieties by construction. We denote them by XAa

.
The chart XAa

covers all the orbits TB , where B ⊂ A is a face containing a. In
particular, XA is fully covered by the charts XAa

corresponding to vertices a ∈ A
(that is, vertices of the convex hull of A).

The chart Ma is endowed with standard coordinates zb = yb/ya, b ∈ A, b ̸= a. In
these coordinates, the affine varietyXAa

can be described as the closure of the image
of the map jA,a : T → Ma sending every x ∈ T to the point with coordinates zb =
xb−a. In particular, the restrictions of the polynomials in zb toXAa

produce Laurent
polynomials of the form

∑
a′∈Aa

ca′x
a′ , where Aa ∈ L is the semigroup generated by

the differences b − a, b ∈ A. (Here and in what follows we adopt the convention
that all semigroups contain zero.)

In other words, the ring of regular functions on the affine variety XAa
depends

only on the semigroup Aa, rather than on the whole of A, and it is its semigroup
algebra C[Aa]. We recall that an affine variety is completely determined by its ring
of regular functions: XAa = Spec C[Aa]. In particular, if Aa and Bb are isomorphic
semigroups, then so are the affine toric varieties XAa and XBb

. This justifies the
notation XAa

and the following definition.

Definition 2.3.4. The affine toric variety XS corresponding to a finitely generated
semigroup S ⊂ L with zero is the variety Spec C[S] with an action of the torus
T = Spec C[L] induced by the embedding C[S] ⊂ C[L].

To put it simply, XS is the closure of the image of the map jB : T → CB

sending every x ∈ T to the point with coordinates zb = xb, b ∈ B, where B is an
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arbitrary finite system of generators of S. (Independence of the choice of generators
follows from the coincidence with the first definition. The torus action on XS is
defined to be the composite of the embedding jB : T → (C\{0})B and the standard
coordinate-wise product action of (C \ {0})B on CB .)

Remark 2.3.5. By analogy with Remark 2.3.3, we can and will assume without loss
of generality that the semigroup S generates the ambient lattice Zn. Speaking of
a semigroup, we always mean that it is finitely generated and contains zero.

In particular, this is the case for the semigroups Aa, a ∈ A, in view of
Remark 2.3.3.

Example 2.3.6. Note that the affine toric variety XS is isomorphic to Cn =
Spec C[x1, . . . , xn] if and only if the semigroup S is free, that is, isomorphic to
{(a1, . . . , an) ∈ Zn | ai ⩾ 0}.

Suppose that A ⊂ Zn and a ∈ A. The semigroup Aa is free if and only if
1) a is a vertex of the convex hull P of A;
2) the lattice points ai closest to a on the adjacent edges of P are contained in A;
3) the vectors ai − a form a basis of the lattice.

Remark 2.3.7. Multiplicity is a measure of non-smoothness of an algebraic variety
at a given point. By a formula of Kushnirenko, the multiplicity of the affine toric
variety XS at 0 is equal to the lattice volume of the difference of the convex hulls
of S and S \ {0}.

Example 2.3.8. We can easily conclude from definitions that the semigroup ring
C[S] is integrally closed if and only if the semigroup S ⊂ Zn contains all the lattice
points of its convex hull. We call such a semigroup integrally closed and conclude
that the affine toric variety XS = Spec C[S] is normal if and only if the semigroup S
is integrally closed.

2.3.7. Smoothness and normality of the projective toric variety XA. According
to the example above, if the semigroups Aa are free for all vertices a ∈ A, then
the variety XA is covered by smooth charts XAa

. This proves the ‘if’ part of the
following assertion.

Assertion 2.3.9. The variety XA is smooth if and only if the semigroups Aa are
free for all vertices a ∈ A.

The ‘only if’ part is not so important for us. It can also be deduced directly from
the definitions. This assertion motivates the following definitions.

Definition 2.3.10. 1) An n-dimensional polytope is said to be simple if each of
its vertices is incident to n edges.

2) A simple n-dimensional lattice polytope is said to be integrally simple or
(mostly in symplectic contexts) is called a Delzant polytope if, for every vertex,
the vectors issuing from it towards the closest lattice points on incident edges form
a basis of the lattice Zn.

3) A finite set A ⊂ Zn is said to be integrally simple if its convex hull is integrally
simple and the lattice points inside each of its edges that are closest to the endpoints
lie in A.
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Remark 2.3.11. (i) By Example 2.3.6, the last assertion can be restated as follows:
the variety XA is smooth if and only if the set A ⊂ Zn is integrally simple.

(ii) We recall that, in accordance with Remark 2.3.3, we always assume that A
cannot be moved to a proper sublattice by a parallel translation. The assertion
in part (i) does not hold without this assumption. For example, if A is the Reeve
tetrahedron (see Remark 2.3.3), then A is not integrally simple, but XA is smooth
(this is merely a projective space).

Similar to smoothness, a criterion for the normality of a toric variety can be
obtained by passing to affine charts.

Definition 2.3.12. A set A ⊂ Zn is said to be integrally closed if for all vertices
(and hence for all points) a ∈ A the semigroups Aa are integrally closed (see
Example 2.3.8). A lattice polytope is said to be integrally closed if the set of its
lattice points is integrally closed.

Assertion 2.3.13. The variety XA is normal if and only if A is integrally closed.

2.4. Toric varieties and fans.

2.4.1. Isomorphism of toric varieties and fans. The covering of a toric variety by
charts shows that the equality A = B is not required for the normal varieties XA

and XB to be isomorphic. One needs a much weaker condition, namely the equality
of their dual fans in the following sense.

By a cone in Qn we mean the set of linear combinations of a given finite set of
vectors with positive coefficients. Note that it is more customary to define cones
as closed sets (that is, sets of linear combinations with non-negative coefficients),
but in this subsection it is convenient for us to understand cones as relatively open
sets (that is, open in the topology of their linear span).

By a face we mean the intersection of the closure of the cone with the boundary
of a half-space containing it. A cone is said to be strictly convex (or pointed) if
its minimal face is a point (that is, the cone contains no lines). A fan is a set of
strictly convex cones such that, along with any cone, it contains all of its faces and
the intersection of the closures of any two cones is a face shared by them. A fan is
said to be complete if the ambient space is the union of its cones.

Definition 2.4.1. Given a polytope or a finite set A in a Q-vector space V , we
define the dual cone of a face B ⊂ A to be the set of exterior normals to B, that
is, linear functions l ∈ V ∗ whose restrictions to A attain their maxima precisely at
the points in B (in other words, points l such that B = Al is a support face). The
dual fan of A is the set of dual cones of all the faces of A.

If the dual fan ofA′ is a subdivision of the dual fan ofA and the toric varietiesXA′

and XA are normal, then the identification of their dense orbits (canonically iso-
morphic to the torus T ) extends to a map πA′,A : XA′ → XA.

In fact, for every face B′ ⊂ A′ there is a unique face B ⊂ A whose dual cone
contains the dual cone of B′. Since XA is normal, we have kerB′ ⊂ kerB by
Assertion 2.3.13. Therefore, we can define πA′,A on the orbit TB′ = T/ kerB′ to be
the factorization map to TB = T/ kerB .

It follows from the existence of the maps πA′,A and πA,A′ that normal toric
varieties XA and XA′ are isomorphic if the dual fans of A and A′ are isomorphic



108 B.Ya. Kazarnovskii, A.G. Khovanskii, and A. I. Esterov

(that is, can be mapped to one another by an isomorphism between the ambient
spaces). This implies that a toric variety XA can be recovered from the dual fan ΣA

of A even without knowing A itself.
Our aim is to describe a construction of this recovery. First we give a general

definition and then explain it using a more elementary and explicit coordinate
language in the most important case of smooth varieties.

2.4.2. The toric variety corresponding to a fan.

Definition 2.4.2. Let V be a space endowed with a lattice L and let Σ be a fan
in V ∗. For every cone C ∈ Σ we define the dual semigroup C× as the intersection of
the dual cone with L. An adjacency C ′ ⊂ C gives an embedding of group algebras
jC′,C : Z[C ′] ⊂ Z[C]. Gluing the affine toric varieties XC× = Spec Z[C×], C ∈ Σ,
along the maps induced by the embeddings jC′,C , we obtain a variety denoted
by XΣ. Since the gluing maps are compatible with the actions of the torus T on
the affine charts, the torus action is well defined on the whole of XΣ. We call it the
toric variety corresponding to the fan Σ.

Remark 2.4.3. (i) When the fan Σ is generated by a single full-dimensional cone C
(that is, consists of all its faces), the toric variety XΣ coincides with the affine
variety XC× .

(ii) When the maximal cones of the fan are generated by bases of the lattice
(and only in this case), the variety XΣ turns out to be smooth. Then the definition
becomes a construction of XΣ by gluing together several charts (isomorphic to Cn)
by means of the monomial gluing maps encoded in the fan. In what follows (see
§ 2.4.3) we give an explicit description of this construction in coordinates.

(iii) When Σ = ΣA is the dual fan of an integrally closed subset A in the lattice
of characters of T , we have repeated verbatim the construction of a covering of the
normal toric variety XA by affine charts.

Even when A is not integrally closed, the embedding of the torus T in the toric
varieties XA and XΣA

extends to a map XΣA
→ XA, which is a normalization

of XA.
Even when XA is not normal, the normalization map is often one-to-one. This

occurs if and only if the differences of the points of any face B ⊂ A generate
a saturated sublattice in L.

(iv) For arbitrary fans this construction establishes a one-to-one correspondence
between normal toric varieties (that is, ones possessing a torus action with dense
orbit) and rational fans. This correspondence sends compact varieties to complete
fans, projective varieties to convex or coherent fans (that is, the dual fans of poly-
topes), and smooth varieties to smooth or non-singular fans (that is, fans whose
full-dimensional cones are generated by lattice bases). Convex fans are often
referred to as normal, but we shall not use this term. (This property of a fan
is unrelated to the normality of the corresponding toric variety, which can lead to
ambiguities in the context of algebraic geometry.)

(v) Not all fans are convex. The simplest example is given by the complete fan
whose two-dimensional cones are generated by edges in the set

{the complete graph on the vertices A1, B1, C1, A2, B2, C2} \ {A1B2, B1C2, C1A2},
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where A1B1C1A2B2C2 is a triangular prism with centre 0 ∈ R3. But if a fan
is convex, it possesses a dual polytope whose set of lattice points is integrally
closed. For example, for any polytope P , the set of lattice points of its homothety
P̃ = (dimP + 1) · P is integrally closed. This means, in particular, that the
normal toric variety XΣ corresponding to a convex fan Σ can be realized as the
projective toric variety XA corresponding to an integrally closed set A of lattice
points.

(vi) A convex fan is non-singular if and only if all (or, equivalently, some) of its
dual polytopes are integrally simple. This means, in particular, that the smooth
toric variety XΣ corresponding to a smooth convex fan Σ can be realized as the pro-
jective toric variety XA corresponding to the set A of lattice points of an integrally
simple polytope.

(vii) By construction, the orbits of XΣ are in a one-to-one correspondence with
the cones in Σ. The orbit corresponding to a cone C ∈ Σ is denoted by TC . It is
naturally isomorphic to the quotient T/{tl, l ∈ C}.

(viii) If a fan Σ′ is a subdivision of Σ, then there is a natural map πΣ′,Σ : XΣ′ →
XΣ. For every cone C ′ ∈ Σ′ lying in a cone C ∈ Σ, this map sends the orbit
TC′ = T/{tl, l ∈ C ′} to the orbit TC = T/{tl, l ∈ C} by taking the quotient
relative to {tl, l ∈ C}.

2.4.3. Gluing a smooth toric variety in accordance with a fan. In the case when
every maximal cone C of a fan Σ is generated by a lattice basis vC (and only in
this case), the variety XΣ is smooth. Then the definition of XΣ takes the form of
constructing it by gluing together several charts (isomorphic to Cn and labelled by
the maximal cones C) by means of monomial gluing maps encoded in the transition
matrices between the bases vC . We now describe this construction explicitly.

The bases v = (v1, . . . , vn) of the lattice L∗ of one-parameter subgroups of
the torus T are in a one-to-one correspondence with the monomial parameteri-
zations hv : (C\{0})n → T of this torus. Namely, hv(t1, . . . , tn) = tv1

1 · · · tvn
n , where

t = (t1, . . . , tn) are the standard coordinates on (C \ {0})n. In particular, any two
bases v and ṽ identify T with two copies of the standard torus (C \ {0})n. We
denote the coordinates on these copies by t and t̃, respectively.

The coordinates t̃ can be expressed in terms of t using the transition matrix,
v⊤ = C · ṽ⊤. This is a monomial expression. Let ci (resp. ci) be the rows (resp.
columns) of the matrix C. Then we have an equality

t̃ ṽ1
1 · · · t̃ ṽn

n = tv1
1 · · · tvn

n = tc
1·ṽ⊤

1 · · · tc
n·ṽ⊤

n = (tc1)ṽ1 · · · (tcn)ṽn

for points in T , that is, in coordinates,

t̃i = tci . (2.2)

This map (C \ {0})n
t → (C \ {0})n

t̃
has the following important properties:

(a) Extendability. If the first k vectors of a basis v lie in the cone generated by
the basis ṽ, then the map gv,ṽ given by (2.2) is well defined on Ck × (C \ {0})n−k

(and not only on the subset (C \ {0})n). This is because the first k rows of the
transition matrix C consist of non-negative numbers.
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(b) Invertibility. If, moreover, the first k vectors of v coincide with those of ṽ,
then gv,ṽ is a one-to-one correspondence Ck × (C \ {0})n−k → Ck × (C \ {0})n−k.
Indeed, gṽ,v is the well-defined inverse map.

(с) Separability. If, moreover, the intersection of the cones generated by v and ṽ
is their common face generated by v1, . . . , vk, then the result of gluing two copies
of Cn ⊃ Ck × (C \ {0})n−k by means of the map gv,ṽ has a separable topology.
Indeed, if two points not identified by gv,ṽ could not be separated, then, according
to the valuative criterion for completeness, they would be limits of the germ of the
same curve γ : C → T (more precisely, of its pull-backs under the parameterizations
hv, hṽ : (C \ {0})n → T ). Hence the one-parameter group deg γ that approximates
the curve γ ∈ L∗ asymptotically (see p. 104) would lie in the cones generated by
both these bases but not in their common face. This contradicts our assumptions.

The properties of the maps gv,ṽ enable us to use them to glue together smooth
charts to obtain the toric variety corresponding to a non-singular fan Σ in L∗ (that
is, a fan each of whose full-dimensional cones C is generated by a lattice basis vC).
Namely, we take the chart MC = Cn for every such cone C and glue these charts
together by means of the gluing maps gvC ,vC̃

: MC →MC̃ . The action of the torus T
on each chart extends to an action on the whole resulting variety XΣ.

The resulting action has a dense orbit, which can be identified with T . The
parameterizations hvC

: (C\{0})n → T introduced above can be extended to become
the charts MC → XΣ of an atlas.

All smooth toric varieties can be obtained by means of this construction.

2.5. Toric resolutions and compactifications. Consider an algebraic subset
V ⊂ T of the complex torus, that is, a subset given by polynomial equations
φ1 = · · · = φk = 0. Motivated by § 2.3.1, we want to find a toric variety XΣ ⊃ T
such that the closure of V in it is smooth.

It turns out that if the maps φi in the equations of V are generic Laurent
polynomials in the spaces CAi , then the toric variety XΣ has the desired property
for any non-singular fan Σ which is a subdivision of the dual fans of A1, . . . , Ak.
More precisely, the following theorem holds.

Theorem 2.5.1. 1) For every k-tuple of finite subsets A1, . . . , Ak in the lattice L
there is a complete non-singular fan subdividing ΣA1 , . . . ,ΣAk

(that is, a fan such
that every cone in it is generated by a part of a basis of the lattice L∗ and lies in
some cone of each fan ΣAi ).

2) The k-tuples of Laurent polynomials (φ1, . . . , φk) satisfying the condition in
Theorem 2.2.4 (so that for every linear function γ : L→ Z, γ ∈ |Σ|, zero is a regular
value of φγ = (φ1|Aγ

1
, . . . , φk|Aγ

k
): T → Ck ) form a Zariski open subset of CA1 ⊕

· · · ⊕ CAk .
3) Given A1, . . . , Ak , suppose that Σ is a fan satisfying the assumptions of part 1),

except possibly for completeness, and V = {φ1 = · · · = φk = 0} is a set satisfying
the assumptions of part 2). Then the closure of V in the smooth toric variety XΣ

is a smooth subvariety transversal to all orbits in XΣ .
4) Under the hypotheses of part 3), the intersection of the closure of V with the

orbit TC = T/⟨tl, l ∈ C⟩, C ∈ Σ, coincides with {φγ = 0}/⟨tl, l ∈ C⟩.



Newton polytopes and tropical geometry 111

Part 1) of this theorem is rather non-trivial but purely combinatorial (see [33]).
The covering of XΣ by affine charts reduces the other parts to the case of the
affine toric variety XΣ = XQ = Cn, where Q ⊂ Qn is the positive octant and
0 ∈ Ai ⊂ Q. In this case, the desired assertions follow from Sard’s theorem for
φ = (φ1, . . . , φk) : (C \ {0})n → Ck. Indeed, this map extends to φ̃ : Cn → Ck, and
the closure of V ⊂ (C \ {0})n in Cn is given by φ̃ = 0. Hence, by Sard’s theorem,
a generic point c ∈ Ck is a regular value of the restrictions of φ̃ to all coordinates
planes. Parts 2)–4) of the theorem follow since

– the polynomial ψ̃ := φ̃− c is also contained in CA;
– the equation ψ̃ = 0 determines a smooth subvariety, which intersects each

coordinate plane in Cn transversally;
– the restriction of ψ̃ to a coordinate plane is equal to ψ̃γ for a covector γ in the

corresponding coordinate plane of Zn.
Theorem 2.5.1 enables us to prove all the assertions about Newton polytopes

in § 2.2 by means of toric geometry.
For an arbitrary algebraic set V ⊂ (C \ {0})n, a smooth toric compactification

need not exist, but there is always a weaker version in the following sense.

Definition 2.5.2. 1) The truncation of a Laurent polynomial f =
∑
a∈A

cax
a in the

direction of l ∈ L∗ is the sum of its leading monomials in the sense of the grading
l : L→ Z, that is, f l =

∑
l(a)=l0

cax
a for the largest l0 such that this sum is non-zero.

2) The truncation of an ideal I ⊂ C[L] in the ring of Laurent polynomials is the
ideal I l generated by the truncations f l, f ∈ I.

3) The truncation V l of an algebraic variety V ⊂ T in the direction of l ∈ L∗ is
the zero variety of the ideal I l, where I is the ideal of V .

Assertion 2.5.3. 1) For every subvariety V of the complex torus T there is a com-
plete non-singular fan Σ in the lattice L∗ such that the closure of V in the toric
variety XΣ intersects each orbit TC , C ∈ Σ, along a set of codimension codimXC +
codimV .

2) For every cone C of such a fan Σ, the truncations of V along all l ∈ C
coincide (we denote them by VC ), and therefore VC is invariant under the action of
all one-parameter subgroups tl , l ∈ C .

3) The intersection of the closure of V with an orbit TC = T/⟨tl, l ∈ C⟩ is equal
to VC/⟨tl, l ∈ C⟩.

A proof will be given in § 5. Such a pair (XΣ, V ) is called a tropical compact-
ification of V . Following [62], we say that a smooth variety V is schön if it has
a tropical compactification such that V is smooth. In particular, we have seen that
all varieties given by sufficiently generic equations are schön.

3. Tropical geometry and A-discriminants

3.1. Tropical geometry. Tropical numbers are usually defined as elements of
the set R endowed with −∞ and the structure of a semiring, where the sum of a
and b is max(a, b) and their product is a+ b. However, we follow the ideas in [66]
to give another definition of the sum.
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Figure 1. The graph of a tropical polynomial.

Let T = R ⊔ {−∞} be the tropical semifield with operations

a ·
T
b = a+

R
b and a+

T
b =

{
max(a, b) if a ̸= b,

[−∞, a] if a = b.

This multivalued tropical sum is slightly more convenient than the usual one
(see, for example, Definition 3.1.2 below). It is also more natural since the tropical
sum and product are meant to axiomatize the behaviour of the degree of the sum
and product of two polynomials, and we know that if deg f = deg g, then deg(f+g)
can take any value in the interval [−∞,deg f ].

In what follows we always write 1 ∈ T and 0 ∈ T for 0 ∈ R and −∞, respectively.
Moreover, since the sum is multivalued, ‘= 0’ in the tropical sense means ‘∋ −∞’.

Remark 3.1.1. We denote tropical objects by Fraktur letters because we regard the
tropical torus T \ 0 as the real part of the Lie algebra of the complex torus C \ {0}.

Definition 3.1.2. A tropical hypersurface is a set of the form S = {x | f(x) = 0},
where f is a tropical polynomial. In a sufficiently small neighbourhood of a generic
point x0 ∈ S, one can represent f in the form g · hk, where g(x0) ̸= 0 and h is an
irreducible polynomial. The greatest possible integer k with this property is called
the multiplicity of S at x0.

Moreover, in a small neighbourhood of a generic point x0 ∈ S, the set S ⊂ Tn

coincides with a hyperplane and the polynomial f is equal to its monomials caxa

and cbx
b on the two sides of this hyperplane. Then b − a ∈ Zn splits into a prod-

uct k · v, where v ∈ Zn is a primitive vector and k ∈ N is called the multiplic-
ity of S at x0. (This coincides with the original definition since f is equal to
cax

a((cb/ca)xv + 1)k as a function in a neighbourhood of x0.)
For example, Fig. 1 shows the graph of f(x) = x3 + x2 + 6x + 8 as well as the

set {f = 0} = {2, 3} with multiplicity 1 and 2, respectively (empty circles).
Algebraic geometry over tropical numbers is useful because the answers to many

enumerative problems appear to be the same over C and over T. For example, we
state a tropical analogue of the Kushnirenko–Bernstein theorem.
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We say that tropical hypersurfaces H1, . . . ,Hn in the tropical torus Rn = (T\0)n

intersect transversally if their intersection consists of finitely many points and, in
a sufficiently small neighbourhood of every such point p, each hypersurface Hi looks
like a hyperplane, that is, Hi is given (with multiplicity accounted for) by a tropical
equation of the form xap,i + pap,i = 0 for some ap,i ∈ Zn. Then the intersection
number of H1, . . . ,Hn at p is set to be |det(ap,1, . . . , ap,n)|.

Theorem 3.1.3 (tropical Kushnirenko–Bernstein theorem). The total intersection
number of transversal hypersurfaces H1, . . . ,Hn is equal to the mixed volume of the
Newton polytopes of their equations.

Note that in the case when the equations of the hypersurfaces are of the form
xap,i +pap,i = 0, this theorem coincides with the definition of the intersection num-
ber. (Hence the theorem could not hold for any other definition of the intersection
number.)

Theorem 3.1.3 admits the following generalization to the case of non-transversal
hypersurfaces. In this form, the theorem turns out to be an additivity property
for mixed volumes and enables one to calculate the mixed volumes of complicated
polytopes in terms of those of their simple parts.

Definition 3.1.4. The local Newton polytope of a tropical polynomial φ at
a point x0 is the minimally possible Newton polytope of a tropical polynomial
which coincides with φ as a function in a neighbourhood of x0.

We denote it by Nφ,x0 . More constructively, it is the convex hull of all a such
that the value of the monomial caxa of the polynomial φ(x) =

∑
cax

a at the point
x = x0 is equal to the maximum value φ(x0).

Note that every polynomial φ has finitely many local Newton polytopes. They
form a subdivision of its Newton polytope, which is called the dual subdivision of φ
and is denoted by Sφ.

Theorem 3.1.5 (additivity of mixed volume under subdivision). The sum over all
x ∈ Tn of the mixed volumes of the local Newton polytopes Nφ1,x, . . . , Nφn,x is equal
to the mixed volume of the Newton polytopes of the polynomials φ1, . . . , φn .

In particular, the mixed volumes of the local Newton polytopes vanish at all but
finitely many points x due to dimensional considerations. In the case of transversal
hypersurfaces, this theorem becomes the previous one. Hence it can naturally be
restated in the following form.

Definition 3.1.6. The intersection number of arbitrary tropical hypersurfaces
φi = 0 at a point x is the mixed volume of the local Newton polytopes
Nφ1,x, . . . , Nφn,x.

Note that when we perturb tropical hypersurfaces to make them transversal,
their point of intersection x splits into several close points of transversal intersec-
tion xi, and the intersection number at x (in the sense just defined) is, by Theo-
rem 3.1.3, equal to the sum of the intersection numbers at xi (in the sense defined
before Theorem 3.1.3).

In this terminology, the last theorem takes the following form.



114 B.Ya. Kazarnovskii, A.G. Khovanskii, and A. I. Esterov

Theorem 3.1.7 (generalized tropical Kushnirenko–Bernstein theorem). The total
intersection number of tropical hypersurfacesH1, . . . ,Hn (not necessarily transversal)
is equal to the mixed volume of the Newton polytopes of their equations.

In practice, it is convenient to construct the dual subdivision of the Newton
polytope N of a polynomial φ(x) =

∑
a∈N∩Zn

cax
a by using its Legendre transform

φ̃ : N → R. It is defined as the minimal upper-convex function whose value at each
point a ∈ N ∩ Zn is not smaller than ca.

Assertion 3.1.8. The n-dimensional components of the dual subdivision of the
Newton polytope N of a tropical polynomial φ are precisely the maximal domains
of linearity of the Legendre transform φ̃ : N → R.

Example 3.1.9. The dual subdivision of the polynomial 5 + 10x + 11y + 6xy is
the partition of its Newton polytope [0, 1]2 into two triangles by the diagonal from
(1, 0) to (0, 1). The Legendre transform of this polynomial is a continuous function
on [0, 1]2, which is linear on these triangles and takes the values 5, 10, 11, and 6 at
their vertices.

The polynomial φ cannot be uniquely recovered from its Legendre transform φ̃
as a polynomial, but it can as a function φ = ˜̃φ. In particular, φ̃ determines the
hypersurface φ = 0 uniquely. For example, by the assertion above, its vertices are
in a one-to-one correspondence with the domains of linearity of φ̃, and each vertex
is equal to the differential of φ̃ on the corresponding domain of linearity.

Example 3.1.10. For all c ⩽ 3 the polynomial 2+ cx+4x2 ∈ T[x] determines the
same function T → T and has the same zero and the same Legendre transform. By
contrast, for all c ⩾ 3 the Legendre transforms, the functions, and their zeros are
pairwise different. However, the zeros can be uniquely recovered from the Legendre
transforms in either case.

The relationship between the dual subdivision and the Legendre transform moti-
vates the following definition.

Definition 3.1.11. A subdivision of a lattice polytope is said to be coherent (or
convex or regular) if it is dual to some tropical polynomial or, equivalently, it is the
set of domains of linearity of some upper-convex piecewise linear function.

Not all subdivisions are coherent.

3.2. The tropical correspondence theorem. The tropical Kushnirenko–
Bernstein theorem is a simple instance of the following tropical correspondence
principle, whose full generality is currently rather mysterious.

The answers to many problems of computational algebraic geometry
are the same over C and over T.

This principle is useful because algebraic geometry over T is piecewise linear com-
binatorics. Therefore, a proof of the tropical correspondence principle for a given
class of computational questions is by itself a combinatorial answer to these ques-
tions.

The first substantial class of questions for which this principle has been estab-
lished is about computing the Gromov–Witten invariants of the projective plane.
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Many proofs of this fact are known these days. The original analytic proof [47]
used the language of amoebas, the proofs in [53] and [55] were oriented towards
deformation theory, and those in [63] and [22] towards intersection theory. There
are also many generalizations such as counting curves with more complicated sin-
gularities [54] which satisfy more general incidence conditions [5] or lie in spaces of
higher dimension [55].

Definition 3.2.1. We write Nd,g for the number of algebraic curves of degree d
and genus g in CP2 passing through a fixed set of generic points p1, . . . , pk.

Clearly, this number can be finite and non-zero only if k is equal to the dimension
3d − 1 − g of the family of all plane curves of degree d and genus g (the so-called
Severi variety). Therefore, we always assume that k is equal to 3d− 1− g.

A Zariski open subset of the Severi variety is formed by nodal curves, that is,
curves with only the simplest singularities, namely transversal intersections (nodes).
Hence the family of non-nodal curves of degree d and genus g has a strictly lower
dimension and, therefore, all the curves in Definition 3.2.1 are nodal for k = 3d −
1− g. Since the genus of a curve of degree d with n nodes is (d− 1)(d− 2)/2− n,
each curve in Definition 3.2.1 has (d− 1)(d− 2)/2− g nodes.

Definition 3.2.2. Let φ ∈ T[x, y] be a polynomial with Newton polytope N . The
tropical curve φ = 0 is said to be nodal if the following conditions hold:

– a small neighbourhood of each of its non-smooth points x coincides with the
union of three rays outgoing from x or two lines passing through x, that is, the dual
subdivision of N consists of triangles and parallelograms;

– each of its rays is of multiplicity 1, that is, all the lattice points on the boundary
of N are vertices of the dual subdivision.

The number of nodes of the curve φ = 0 is the sum

(the number of parallelograms in the dual subdivision)
+ (the number of lattice points in the Newton polytope N

which are not vertices of the dual subdivision).

Correspondingly, the genus is the difference

(the number of vertices of the dual subdivision inside N)
− (the number of parallelograms in the dual subdivision).

The multiplicity of the curve φ = 0 is defined to be the product of lattice areas
of the triangles in the dual subdivision of the Newton polytope of φ. The tropical
Gromov–Witten invariant NT

d,g is the total multiplicity of tropical curves of degree d
and genus g passing through 3d− 1− g fixed generic points.

Theorem 3.2.3 (Mikhalkin’s theorem). The equality Nd,g = NT
d,g holds.

Below we deduce the simplest case of this theorem (for curves with one node)
from a description of the Newton polytope of the discriminant given by Gelfand,
Kapranov, and Zelevinsky. Thus we begin by recalling this description and outlining
a more elementary proof of the result than in the original book [21].
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3.3. Support functions and secondary polytopes. Here we define a combi-
natorial object, the secondary polytope, which will later turn out to be the Newton
polytope of the discriminant. We also define its mixed analogue, which will turn
out to be the Newton polytope of the resultant.

The secondary polytope is most naturally defined in terms of its support function.
We recall that the support function of a polytope N in a vector space V is the
continuous piecewise linear function N( · ) : V ∗ → R defined by N(γ) = max γ|N
for every linear function γ : V → R.

Remark 3.3.1. (i) A polytope is uniquely determined by its support function. More
precisely, the vertices vi of the polytope N ⊂ V are in a one-to-one correspondence
with the domains of linearity Li ⊂ V ∗ of the support function N( · ), and vi ∈ V is
equal to the linear function N( · )|Li

∈ V ∗∗ = V .
(ii) These facts are particular cases of Assertion 3.1.8 and the subsequent discus-

sion since the support function of a lattice polytope N can be written as a tropical
polynomial φN =

∑
a∈N∩Zn

xa with Newton polytope N .

In particular, the tropical hypersurface φN = 0 is important. It consists of the
dual cones to the edges of N (see Definition 2.4.1), and the weight of each cone is
equal to the lattice length of the corresponding edge.

Definition 3.3.2. The tropical hypersurface φN = 0 is called the dual tropical fan
of the polytope N and is denoted by [N ]. (This is not to be confused with the dual
fan; see Definition 2.4.1.)

Definition 3.3.3. The secondary polytope of a set A ⊂ Zn is the polytope SA ⊂
RA the value of whose support function on a covector γ ∈ RA with coordinates γa,
a ∈ A, is equal to the integral of the minimal upper convex function γ̃ : convA→ R
such that γ̃(a) ⩾ γa for all a ∈ A.

Example 3.3.4. Consider the secondary polytope of the set {0, 1, 2} ⊂ Z1. The
value of its support function on a covector (γ0, γ1, γ2) ∈ R{0,1,2} is γ0/2+γ1 +γ2/2
if γ1 ⩾ (γ0 + γ2)/2 and γ0 + γ2 otherwise. Hence this secondary polytope is the
closed interval with endpoints (1/2, 1, 1/2) and (1, 0, 1).

To describe the vertices of the secondary polytope using Remark 3.3.1, (i), we
need to describe the domains of linearity of its support function. Note that under
a variation γa ⇝ γa + ε the integral of γ̃ depends linearly on ε if all the domains of
linearity Si of γ̃ adjacent to a are simplexes and, when a ∈ Si, the equality γ̃(b) = γb

holds only for the vertices b ∈ Si. In this case the derivative of
∫

conv A

γ̃(x) dx with

respect to ε is equal to
1

n+ 1

∑
i

VolSi. Otherwise the integral
∫

conv A

γ̃(x) dx as

a function of ε exhibits a kink at ε = 0 and therefore has no derivative. We arrive
at the following conclusion.

Assertion 3.3.5. 1) The support function of the secondary polytope SA is linear in
a neighbourhood of γ ∈ RA if and only if all domains of linearity of γ̃ : convA→ R
are simplexes and the equality γ̃(a) = γa holds only when a is a vertex of one of
them.
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2) There is a one-to-one correspondence between the vertices of SA , the domains
of linearity of the support function SA( · ), and the coherent subdivisions of convA
into simplexes (that is, the triangulations).

Under this correspondence, every triangulation {Ti} is associated with the vertex

of RA whose a-coordinate is equal to
1

n+ 1

∑
i|ais a vertex of Ti

VolTi for every a ∈ A.

The corresponding domain of linearity of SA( · ) consists of all γ such that γ̃ is
a linear function on each simplex Ti .

In what follows we shall need a tropical interpretation of the support function
SA( · ) and the function γ̃ occurring in its definition. We regard the ambient space
of the secondary polytope TA ⊃ SA as the space of tropical polynomials of the form
γ(x) =

∑
a∈A

γax
a.

Remark 3.3.6. The function γ̃ in Definition 3.3.3 is the Legendre transform of the
tropical polynomial γ.

Note that the homothety (n+1)!SA is a lattice polytope. By Remark 3.3.1, (ii),
the support function (n + 1)!SA( · ) can be regarded as a tropical polynomial SA

with Newton polytope (n + 1)!SA. The corresponding hypersurface SA = 0 is
called the secondary fan of A. This set consists of all γ ∈ TA that violate one
of the conditions in Assertion 3.3.5, 1). When n = 2, all such γ can be described
explicitly.

Example 3.3.7. When n = 2, the secondary fan SA = 0 is the union of the
closures of the following cones CT and CT,a of codimension 1:

1) T is an arbitrary coherent triangulation of the polytope convA with vertices
in A. The point a ∈ A is not a vertex of T . The cone CT,a consists of all γ such
that the elements of T are domains of linearity of γ̃ and γ̃(a) = γa.

2) T is an arbitrary coherent subdivision of the polytope convA with vertices
in A such that one element of T is a quadrangle and the other elements are triangles.
The cone CT consists of all γ such that the elements of T are domains of linearity
of γ̃.

3.4. Resultants and discriminants.

3.4.1. Resultants. Given a finite set A ⊂ Zn, we write (C \ {0})A for the space of
Laurent polynomials of the form

∑
a∈A

cax
a, ca ̸= 0.

Definition 3.4.1. The A-resultant

RA ⊂ (C \ {0})A × · · · × (C \ {0})A︸ ︷︷ ︸
n+1

is the closure of the set of all (n+ 1)-tuples of polynomials having a common root
in (C \ {0})n.

Speaking of A-resultants, we always assume that A does not lie in any affine
hyperplane. Then the resultant is an irreducible algebraic hypersurface. We denote
its defining equation by RA again.
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Example 3.4.2. When A = {0, 1, . . . , d} ⊂ Z1, we obtain the classical resultant
of two polynomials of equal degree in one variable.

We can make this definition more constructive by discarding the closure.

Assertion 3.4.3. An (n+ 1)-tuple of polynomials (f0, . . . , fn) is contained in RA

if and only if there is a face Γ of the convex hull of A such that the restrictions
f0

∣∣
Γ
, . . . , fn

∣∣
Γ

have a common root in (C \ {0})n .

In fact, the polynomials fi =
∑

ca,ix
a have a common root if and only if

the plane
∑

ca,iya = 0, i = 0, . . . , n, intersects the image of the embedding

jA : (C \ {0})n → CPA. Hence the (n + 1)-tuple of fi =
∑

ca,ix
a belongs to RA

if and only if the plane
∑

ca,iya = 0, i = 0, . . . , n, intersects the closure of the
image, that is, the toric variety XA ⊂ CPA. But XA consists of orbits which are
the images of jΓ : (C \ {0})n → CPA over all faces Γ ⊂ A, and the intersection of
this plane and orbit is non-empty if and only if the restrictions f0

∣∣
Γ
, . . . , fn

∣∣
Γ

have
a common root.

To describe the Newton polytope of the resultant, it will be convenient to use the
following notation. Given any covector γ in the positive octant of the lattice ZA,
we define a polytope Nγ ⊂ Rn+1 as the ordinate set of the non-negative function γ̃
in Definition 3.3.3.

Lemma 3.4.4. The value of the support function of the Newton polytope of RA on
a covector γ = (γ0, . . . , γn) in the positive octant of the lattice ZA ⊕ · · · ⊕ ZA is
equal to the mixed volume (n+ 1)! MV(Nγ0 , . . . , Nγn).

To prove this, we consider the curve

F (t) = (F0(t), . . . , Fn(t)) =
( ∑

ca,0(t)xa, . . . ,
∑

ca,n(t)xa
)

in the space
(C \ {0})A × · · · × (C \ {0})A︸ ︷︷ ︸

n+1

,

where ca,i(t) ∈ C[t] is a generic polynomial of degree γi,a. On the one hand, the
degree of the polynomial RA(F (t)) ∈ C[t] is equal to the value of the support
function of the Newton polytope of the resultant on γ. On the other hand, the
roots of RA(F (t)) are in a one-to-correspondence with the roots of the generic
system of equations F0(t)(x) = · · · = Fn(t)(x) = 0 in n + 1 variables. There-
fore, by the Kushnirenko–Bernstein formula (Theorem 2.2.1), the number of such
roots is equal to the mixed volume of the Newton polytopes Fi(t)(x), that is,
(n+ 1)! MV(Nγ0 , . . . , Nγn

).

Remark 3.4.5. The lemma just proved determines the Newton polytope of the resul-
tant RA uniquely. Indeed, since the resultant is homogeneous, the value of the sup-
port function of its Newton polytope at a point γ is equal to its value at any point
of the form γ+(d, d, . . . , d), d ∈ R, with the last quantity described by Lemma 3.4.4
for any sufficiently large d.



Newton polytopes and tropical geometry 119

3.4.2. Discriminants.

Definition 3.4.6. The principal A-discriminant is the Laurent polynomial on
(C \ {0})A given by

EA(f) = RA

(
f, x1

∂f

∂x1
, . . . , xn

∂f

∂xn

)
.

The A-discriminant DA is the closure of the set of all polynomials f ∈ (C\{0})A

with critical value zero. If DA is an irreducible hypersurface, then we denote its
irreducible equation also by DA (otherwise we denote the unit polynomial by DA).

Assertion 3.4.3 can be restated for the principal A-discriminant in the following
way: EA(f) = 0 if and only if there is a face Γ ⊂ A such that the restriction
f
∣∣
Γ
: (C \ {0})n → C has critical value zero, that is, DA(f |Γ) = 0. Therefore, up

to a monomial factor, the polynomial EA(f) is equal to the product over all the
faces Γ ⊂ A of the polynomials DA

(
f
∣∣
Γ

)
raised to some powers cΓA ∈ N. These

powers were explicitly calculated in [21]. But if the toric variety XA is smooth
at the points of its Γ-orbit, then it readily follows by an argument similar to the
proof of Assertion 3.4.3 that cΓA = 1. In particular, in low dimensions we obtain
the following results.

Assertion 3.4.7. 1) For n = 1 we have EA = DA up to a monomial factor.
2) Let A ⊂ Z2 be the set of lattice points of an integral polygon N . Then, up

to a monomial factor, EA(f) =
∏
Γ

DA∩Γ

(
f
∣∣
Γ

)
, where Γ ranges over N and all its

sides.

Theorem 3.4.8. 1) The Newton polytope of EA is equal to SA . In particular, the
degree of EA is equal to (n+ 1)! Vol(convA).

2) Let A ⊂ Z2 be the set of lattice points of an integral polygon N . Then the
Newton polytope NDA

of the discriminant DA is uniquely determined (up to a shift)
by the equation SA = NDA

+
∑
Γ

SA∩Γ , where Γ ranges over all sides of N .

To prove part 1) note that the support function of the Newton polytope of EA

at γ is
∫
γ̃(x) dx by Lemma 3.4.4 and Remark 3.4.5. In particular, the degree

of EA is equal to the value of the support function at (1, . . . , 1).
Part 2) follows from part 1) and Assertion 3.4.7 since the Newton polytope of

a product is equal to the sum of the Newton polytopes of the factors.
By Remark 3.3.1, (ii), the support function of the Newton polytope NDA

can
be regarded as a tropical polynomial with Newton polytope NDA

. We call this
polynomial the tropical discriminant and denote it by DA. Then part 2) of the
theorem can be restated as an equality for tropical polynomials:

SA = DA ·
∏
Γ

SA∩Γ. (3.1)

This equality implies that the tropical hypersurface DA = 0 is contained in
SA = 0, that is, in the union of cones in Example 3.3.7. However, there is an
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important class of cones in Example 3.3.7 not contained in DA = 0. Namely, the
following lemma holds.

Lemma 3.4.9. Let a ∈ N be the unique lattice point which is not a vertex of the
triangulation T of the polygon N . Suppose that a lies inside a side of the Newton
polygon Γ0 ⊂ N . Then the interior of CT,a is disjoint from DA = 0.

Indeed, a is the unique interior lattice point (hence the midpoint) of a side I ⊂ Γ0

of a triangle in the triangulation. Hence the polynomials DA and SZ2∩Γ0 coincide
in a neighbourhood of an interior point γ ∈ CT,a with the polynomial SZ2∩I (which
was described in Example 3.3.4). Correspondingly, (3.1) takes the following form
in a neighbourhood of γ:

SZ2∩I = DA ·SZ2∩I · (a tropical monomial).

Hence in a neighbourhood of γ the polynomial DA coincides with a tropical mono-
mial (in customary terminology, a linear function), and therefore it has no tropical
roots near γ.

3.5. Proof of the correspondence theorem in the simplest case. Let A be
the set of lattice points in an integral polygon N ⊂ R2, 0 ∈ N . We want to calculate
the number of polynomials f ∈ CA such that the curve f = 0 has one singularity
and passes through a fixed q-tuple of generic points p1, . . . , pq ∈ (C \ {0})2, where
q = |A| − 2. In other words, we want to calculate the intersection number I of the
following hypersurfaces in CA:

– the incidence conditions H1, . . . ,Hq, where Hi = {f | f(pi) = 0};
– the normalization H0 = {f | f(0) = 1};
– the A-discriminant DA = {f | f = 0 is not regular}.
We tropicalize these objects, choose points p1, . . . , pq ∈ (T \ {0})2, and define

the tropical hypersurfaces

Hi = {f | f(pi) = 0} in TA and H0 = {f | f(0) = 1}.

If the points p1, . . . , pq are generic, then the tropical hypersurfaces H0, . . . ,Hq, and
D = 0 intersect transversally. We denote their intersection number by I. Then

I = I (3.2)

because both sides are equal to the mixed volume of the Newton polytopes of the
hypersurfaces H0, . . . ,Hq and DA by the Kushnirenko–Bernstein formula over C
and T, respectively (Theorems 2.2.1 and 3.1.7).

We now identify those cones of the tropical hypersurface D = 0 that can intersect
generic incidence hypersurfaces Hi.

(a) If the cone CT in Example 3.3.7 corresponds to a subdivision T of a polygonN
all of whose lattice points are vertices, then all triangles in this subdivision have
area 1/2 and the only quadrangle is a parallelogram with area 1. Hence, for every
f ∈ CT , the curve f = 0 is a nodal curve with one node.

(b) If the cone CT in Example 3.3.7 corresponds to a subdivision T of a polygonN
such that not all of its lattice points are vertices (for instance, there is a non-vertex
lattice point b), then, even though the dimension of the cone is equal to |A|−2, the
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dimension of the corresponding family of tropical curves f = 0, f ∈ CT , is strictly
lower since they are independent of the coefficient cb of the polynomial f =

∑
a

cax
a.

Since a tropical curve in a family with less than |A| − 2 parameters cannot pass
through |A|−2 generic points, such a cone CT is disjoint from the generic incidence
hypersurfaces Hi.

(c) If the cone CT,a in Example 3.3.7 corresponds to a triangulation T of a poly-
gon N such that not all of its lattice points other than a are vertices, then this cone
is disjoint from the incidence hypersurfaces Hi like in the previous case.

(d) If the cone CT,a in Example 3.3.7 corresponds to a triangulation T of a poly-
gon N all of whose lattice points other than a are vertices, then the following two
cases may occur in accordance with Lemma 3.4.9:

– the point a lies inside a triangle of this triangulation, and this triangle has
area 3/2 while the other triangles have area 1/2;

– the point a lies inside an interior edge of this triangulation, and the two triangles
adjoining this edge have area 1 while the others have area 1/2.

In both cases, for every f ∈ CT,a the curve f = 0 is nodal with one node.
Thus we have found that the intersection of the tropical hypersurfaces H0, . . . ,Hq,

D = 0 consists of exactly those polynomials f for which the curve f = 0 is nodal
with one node and passes through the incidence points p1, . . . , pq. It also follows
from the definitions that the multiplicity of intersection of these hypersurfaces at
every such point f is equal to the multiplicity of the nodal curve f = 0 in the sense of
the correspondence theorem. (Namely, it is 3 if f ∈ CT,a and a lies inside a triangle
of the triangulation T , it is 4 if a lies on an interior edge of T , and otherwise it
is 1.)

Therefore, the intersection number of the tropical hypersurfaces H0, . . . ,Hq,
D = 0 (as we recall, it coincides with the quantity to be found; see (3.2)), is
equal to the number of nodal tropical curves with one node which pass through the
fixed generic points, with multiplicity accounted for.

4. The ring of conditions of the complex torus and tropical fans

The ring of conditions (see [11]) is an intersection theory for algebraic cycles
in spherical homogeneous spaces with coefficients in a commutative ring Λ. In
this section we consider the ring of conditions Rn(Λ) of the group (C∗)n (which is
a spherical homogeneous space with respect to the action of this group on itself)
with coefficients in Λ = Z,R,C. Many aspects of the ring Rn(Λ) can be described in
terms of the cohomology rings of smooth projective toric varieties [11]. Historically,
the first model of this ring was the so-called polytope algebra [46], [8]. The ring
can also be described using tropical geometry. Its model is the ring of tropical fans
(see [19], [29], [48], [20], [25], [43]). We recall these known results.

4.1. Ring of conditions.

4.1.1. The ring of conditions Rn(Λ) of (C∗)n. We recall the definition of the ring
of conditions (see § 1.4). Cycles X1, X2 ⊂ (C∗)n of dimension k are equivalent
(X1 ∼ X2) if, for every cycle Y ⊂ (C∗)n of dimension n − k and for almost all
g ∈ (C∗)n, we have ⟨X1, gY ⟩ = ⟨X2, gY ⟩, where ⟨A,B⟩ is the intersection number
of A and B. If X1 ∼ X2 and Y1 ∼ Y2, then X1 ∩ g1Y1 ∼ X2 ∩ g2Y2 for almost all
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g1, g2 ∈ (C∗)n. The product X ∗Y of equivalence classes X and Y is the equivalence
class of the intersection X1∩g1Y1, where X1 and Y1 are representatives of X and Y ,
and g1 is a generic element of (C∗)n. The ring of conditions Rn(Λ) is the ring of
equivalence classes with product ∗ and tautological sum.

4.1.2. The Bergman cone. A vector k = (k1, . . . , kn) ∈ Zn is said to be essential
for a variety X ⊂ (C∗)n if there exists a meromorphic function germ f : (C, 0) →
X ⊂ (C∗)n such that f(t) = atk + · · · , a = (a1, . . . , an) ∈ (C∗)n, and the dots stand
for higher-order terms amt

m (with m = (m1, . . . ,mn), where mi ⩾ ki for 1 ⩽ i ⩽ n
and m ̸= k).

The Bergman cone B(X) ⊂ Rn in X is the closure of the set of vectors λk ∈ Rn,
where k is an essential vector for X and λ ⩾ 0.

Theorem 4.1.1. If every irreducible component of X has complex dimension l,
then B(X) is a finite union of convex rational cones |σi| ⊂ Rn , where dimR |σi| = l.
Moreover, B(X) can be subdivided into the fan of a toric variety.

The first version of this theorem appeared in [3]. The development of this con-
struction in the context of tropical algebraic geometry began, in particular, with [60]
and [13].

4.1.3. Good compactification. A toric variety M ⊃ (C∗)n is called a good com-
pactification for a subvariety X ⊂ (C∗)n with dimX = k if the closure X in M is
complete and disjoint from the orbits in M of codimension greater than k.

Theorem 4.1.2. 1) For every finite set S of algebraic subvarieties in (C∗)n there
exists a toric variety M ⊃ (C∗)n giving rise to a good compactification for every
subvariety in S .

2) A toric variety M is a good compactification of a k-dimensional subvariety
X ⊂ (C∗)n if and only if the support of the k-dimensional skeleton of its fan contains
the Bergman cone B(X).

The first part of this theorem was established in [11]. It is very important for
the theory of rings of conditions and tropical geometry. A transparent geometric
proof of this result can be found in [39]. There are a number of refinements of this
theorem (for example, see [62]). The strongest of them has been announced in [39].

Let Sr be the subset in the set of all subvarieties of (C∗)n such that everyX in Sr

can be given by a system of Laurent polynomials whose Newton polytopes lie in
a ball of radius r. The following more precise version of part 1) of Theorem 4.1.2
follows easily from [32].

Theorem 4.1.3. There is a Newton polytope ∆r such that the projective toric
variety M∆r

corresponding to ∆r is smooth and gives rise to a good compactification
for every X ∈ Sr . For every X ∈ Sr its Bergman cone B(X) is the support of
a subfan in the dual fan of ∆r .

4.1.4. The ring Rn(Λ) and the cohomology ring of a toric variety. Given a com-
plete toric variety M ⊃ (C∗)n and a cycle X =

∑
kiXi of dimension k, one can

define a cycle X in M as
∑

kiXi, where Xi is the closure of Xi ⊂ (C∗)n in M .
The cycle X determines an element ρ(X) of H2(n−k)(Mn,Λ) whose value at the
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closure Oi of any orbit Oi of dimension n−k in M is equal to the intersection num-
ber ⟨X,Oi⟩. A compactification M ⊃ (C∗)n is said to be good for X =

∑
kiX

i

in (C∗)n if it is good for every Xi.

Theorem 4.1.4 (see [11]). If a smooth toric compactification M is good for cycles
X , Y , and Z , where Z = X ∗ Y (the product in the ring of conditions), then the
product ρ(X)ρ(Y ) of ρ(X) and ρ(Y ) in the cohomology ring H∗(M,Λ) is equal
to ρ(Z).

In particular, this theorem shows that the embedding

H•(M,Λ) ↪→ Rn(Λ) (4.1)

sending each cohomology class of a smooth toric variety to a representing cycle
which intersects all the orbits properly is a ring homomorphism.

4.1.5. On Chow rings of algebraic varieties. The Chow ring of an algebraic variety
is an algebraic analogue of the ring of intersections of a compact orientable manifold.
Every algebraic subvariety N ⊂ M is called a basic cycle. The degree of a basic
cycle N is denoted by dimN . The cycles in the Chow group of M are integer linear
combinations of basic cycles modulo so-called rational equivalence. The product of
basic cycles in the Chow group is defined to be the intersection of these cycles after
they are made generic. This product extends to all cycles in the Chow group by
linearity and endows the graded Chow group with the structure of a commutative
ring.

The Chow group. To define the graded Chow group and the Chow ring more
precisely, we begin with a definition of trivial basic k-cycles in M . Let W be
a (k + 1)-dimensional algebraic subvariety of M , let π : W̃ → W be the natural
projection onto W of its normalization W̃ , let f be a rational function on W̃ , and
let (f) be the principal divisor of this function on W̃ . The image of (f) under π is
called a trivial basic k-cycle in M . A linear combination of trivial basic k-cycles
is called a k-cycle rationally equivalent to zero.

The graded Chow group A∗(M) of an n-dimensional algebraic variety M is the
direct sum A(M) = A0(M) + A1(M) + · · · + An(M) of its Chow groups Ak(M)
of dimension k = 0, 1, . . . , n, where Ak(M) is the quotient group of all k-cycles
modulo k-cycles rationally equivalent to zero. The group A∗(M) is analogous to
the homology group of M . One can also define a graded group A∗(M) = A0(M) +
A1(M)+· · ·+An(M), where Ak(M) = An−k(M). It is analogous to the cohomology
group of M .

For a compact M , there is a map ρ : Ak(M) → H2k(M,Z) sending every lin-
ear combination of k-dimensional algebraic varieties to the corresponding linear
combination of their fundamental cycles. This map is well defined since cycles
rationally equivalent to zero correspond to cycles homologous to zero in M . The
Chow group Ak(M) can be considerably larger than H2k(M,Z).

Example 4.1.5. Let M be a smooth connected algebraic curve of genus r. Then
the homomorphism ρ : A0 → H0(M,Z) = Z is surjective and its kernel is isomorphic
to the Jacobian of M (which is a compact complex torus of complex dimension 2r).
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On the other hand, the Chow group of a variety with complicated topology may
be small.

Example 4.1.6. Let X be a closed algebraic subvariety of Cn. Then the Chow
group An(M) of the variety M = Cn \X is isomorphic to Z. It is generated by the
fundamental cycle of this variety. The other groups Ak(M) are equal to zero. Note
that the topology of M depends on that of X and can be rather complicated.

The graded Chow group enjoys a particularly close connection with the topology
in the class of algebraic CW-complexes (see Definition 6.2.5), which contains all
smooth projective toric varieties.

Example 4.1.7. Let M be a smooth projective algebraic variety endowed with the
structure of an algebraic CW-complex. Then its graded Chow group is isomorphic
(up to grading) to its graded homology group with integer coefficients.

The Chow ring. Chow proved that the graded group A∗(M) of a smooth quasipro-
jective variety M can be endowed with the structure of a commutative ring.

Definition 4.1.8. CyclesX ∈ Ak(M) and Y ∈ Am(M) are said to be algebraically
transversal if their intersection X ∩ Y is either empty or has codimension k + m
in M .

When X and Y are algebraically transversal, then each component of X ∩ Y
has well-defined multiplicity. The product X · Y of algebraically transversal cycles
X, Y is the formal sum of the components of X ∩ Y with multiplicity accounted
for.

Theorem 4.1.9 (Chow’s theorem). 1) For any cycles X ∈ Ak(M) and Y ∈
Am(M) there are algebraically transversal cycles X ′ and Y ′ which are rationally
equivalent to X and Y , respectively.

2) If X ′ , Y ′ and X ′′ , Y ′′ are algebraically transversal pairs such that X ′ , X ′′

and Y ′ , Y ′′ are rationally equivalent, then X ′ · Y ′ and X ′′ · Y ′′ are also rationally
equivalent.

Chow’s theorem enables us to endow the graded Chow group A∗(M) of a smooth
quasiprojective variety M with the structure of a ring with multiplication Ak(M)×
Am(M) → Ak+m(M) such that the product of algebraically transversal cycles X, Y
is equal to X · Y . Multiplication of Chow cycles is compatible with the operation
of intersection of the corresponding homology classes.

Theorem 4.1.10. Let M be a smooth projective algebraic variety with the structure
of an algebraic CW -complex. Then the Chow ring of M , the intersection ring of
integer homology classes, and the integer cohomology ring of M are isomorphic up
to a change of grading.

Thus, the Chow ring provides a purely algebraic version of the ring of intersec-
tions (or the cohomology ring) of a smooth toric variety. This version is defined not
only for complex toric varieties but also for toric varieties over any algebraically
closed field. On the other hand, for a complex toric variety, the intersection of any
cycles (including real ones) is controlled by its ring of intersections.
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Chow ring and the ring of conditions of the group (C \ {0})n. Linear combinations
of algebraic subvarieties of (C \ {0})n occur in the definition of the Chow ring as
well as in the definition of the ring of conditions of this group. But these rings
are very different. The Chow ring is isomorphic to the ring of integers, with the
fundamental class of the group as its generator. By contrast, the ring of conditions
of this group is very rich. In particular, it admits a version of Theorem 2.2.1, which
makes it possible to calculate the number of points of intersection of n hypersurfaces
determined by sufficiently generic equations with fixed Newton polytopes. It follows
from the general results due to De Concini and Procesi that the ring of conditions is
the projective limit of the Chow rings (or integer cohomology rings) of all possible
smooth projective toric compactifications of (C \ {0})n. This result is based on
the theorem of existence of a good compactification for every algebraic subvariety
of (C \ {0})n.

De Concini and Procesi [11] defined the ring of conditions for any homogeneous
spherical space. The rings of conditions can be regarded as a generalization of the
classical Schubert calculus. The rings of conditions and Schubert calculus coincide
for the flag varieties of reductive groups, which are compact homogeneous spaces.
Unfortunately, the rings of conditions of non-compact spherical spaces are difficult
to describe. Descriptions of such rings are currently known only for some spaces.
They were found using equivariant cohomology. For the class of horispherical homo-
geneous spaces, which contains (C\{0})n and all flag varieties, there is a description
of the ring of conditions which is close to the description of this ring for (C \ {0})n

presented in our survey; see [24].

4.2. The ring of tropical fans.

4.2.1. The ring of balanced Λ-weighted fans. In this subsection we construct an
important combinatorial model of the ring of conditions of a complex torus and the
cohomology rings of smooth toric varieties.

4.2.1.1. A Λ-weighted k-fan is the fan F ⊂ Rn of a toric variety of dimension n
endowed with a weight function c : Fk → Λ on the set Fk of all cones of dimension k
in F . The support |F | of a fan F is the union of all cones |σi| ⊂ Rn such that
σi ∈ Fk and c(σi) ̸= 0. Weighted k-fans F1 and F2 are equivalent if 1) |F1| = |F2|
and 2) the weight functions c1 and c2 induce the same weight function on all the
cones of a common subdivision of F1 and F2.

4.2.1.2. Let F be a weighted k-fan. Given any cone σi ∈ Fk, we write L⊥i ⊂
(Rn)∗ for the dual space to the ambient space Li of the support |σi| ⊂ Rn. Let O
be an orientation of |σi|. We write e⊥i (O) ∈ Λn−kL⊥i for a vector of dimension n−k
such that 1) the lattice volume |e⊥i (O)| in L⊥i is equal to 1, and 2) the orientation
e⊥i (O) is induced by the orientation O of |σi| and the standard orientation of Rn.
A weighted cone of a k-fan F satisfies the balancing condition if the following
relation holds for any orientation of the cone |ρ| of dimension k−1, where ρ ∈ Fk−1:∑

e⊥i (O(ρ))c(σi) = 0, (4.2)

where c is the weight function, the sum is taken over all σi ∈ Fk with |ρ| ⊂ ∂|σi|,
and O(ρ) is an orientation of |σi| such that the orientation of ∂|σi| is compatible
with that of |ρ|.
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Remark 4.2.1. It is easily verifiable that a weighted cone of codimension 1 is bal-
anced if and only if it is a tropical hypersurface in the sense of § 3.1. This explains
why balanced weighted fans are also said to be tropical.

4.2.1.3. Let F1 and F2 be balanced k- and (n − k)-fans. Cones σ1
i ∈ F1 and

σ2
j ∈ F2 with dimσ1

i = k and dimσ2
j = n−k are said to be a-admissible for a given

vector a ∈ Rn if |σ1
i | ∩ (|σ2

j |+a) ̸= ∅. Let Ci,j be the index of Λi⊕Λj in Zn, where
Λi = L1

i ∩Zn, Λj = L2
j ∩Zn, and L1

i , L2
j are the linear spaces spanned by |σ1

i |, |σ2
j |,

respectively. The intersection number c(0) of the fans F1 and F2 is defined as∑
Ci,jc1(σ1

i )c2(σ2
j ), (4.3)

where the sum is taken over all a-admissible pairs σ1
i , σ2

j for a generic vector a ∈ Rn.
(One can show that if F1 and F2 satisfy the balancing condition (4.2), then the
sum (4.3) is independent of the choice of a.)

Remark 4.2.2. (i) This definition of the intersection number can be understood
informally as follows. For any generic vector a, the shift of the second fan by a
intersects the first fan transversally at a finite number of points. This enables us to
endow every such transversal intersection point with a weight as in (4.3) and define
the intersection number as the weighted number of intersection points.

(ii) This point of view makes clear an analogy with the definition of the ring
of conditions, where we also shift one of the intersecting subvarieties by a generic
element in order to define the intersection number. (However, we do not formalize
this analogy.) In this sense, the ring structure on the space of tropical fans (to be
introduced in the next subsection) can be regarded as an analogue of the ring of
conditions in tropical algebraic geometry.

4.2.1.4. Consider a k-fan F1 and an m-fan F2 in the set TRn(Λ) of all balanced
Λ-weighted fans. Denote n− (k +m) by d. If d < 0, then F1 ×F2 = 0. If d = 0,
then the product F = F1×F2 is the 0-fan F = {0} with weight c(0) equal to the
intersection number (defined above) of F1 and F2.

We now define the d-fan F = F1 × F2 for d > 0. Suppose that F1 and F2

are subfans of a complete fan G . Then F = F1 × F2 is also a subfan of G .
The weight c(δ) of a cone δ in G with dim δ = d is defined as follows. Let L
be the space spanned by |δ|, and let (F1)δ and (F2)δ be weighted subfans of F1

and F2 containing all the cones of F1 and F2 which contain δ. The weight c(δ) of
a cone δ in F = F1×F2 is equal to the intersection number of the quotient images
(F1)δ and (F2)δ in the quotient space Rn/L endowed with the quotient lattice
Zn/(L ∩ Zn). (Note that these images are of complementary dimensions in the
quotient space, so that their intersection number is well defined.)

Remark 4.2.3. In particular, this definition enables us to define the intersection
number of several fans Fi of total codimension n as the multiplicity of a zero-
dimensional fan, namely their product. As can easily be seen from the definitions,
when the codimensions of all the fans are equal to 1 (so that the fans are tropical
hypersurfaces), this intersection number coincides with that introduced in § 3.1.
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4.2.2. Tropicalization of the ring Rn(Λ). Let M∆ be the smooth complete toric
variety constructed from an n-dimensional polytope ∆, and let ∆⊥ be its dual fan.
We consider the ring TRn(Λ,∆) ⊂ TRn(Λ) of balanced Λ-weighted fans which are
Λ-linear combinations of cones in ∆⊥. The following theorems were proved in [19].

Theorem 4.2.4 [19]. The ring TRn(Λ,∆) is isomorphic to the cohomology ring
H•(M∆,Λ). The component of TRn(Λ,∆) containing k-fans corresponds to
H2n−2k(M∆,Λ) under this isomorphism.

Theorem 4.2.5 [19]. The ring of conditions Rn(Λ) is isomorphic to the tropi-
cal ring TRn(Λ) of all Λ-weighted fans. (The rings Rn(Z), Rn(C) have similar
descriptions.)

In particular, since the embeddings TRn(Λ,∆) ⊂ TRn(Λ) over all ∆ exhaust
the ring TRn(Λ), the embeddingsH•(M,Λ) ↪→ Rn(Λ) (mentioned above; see (4.1))
over all smooth complete toric varieties M exhaust the ring of conditions.

Our next aim is to describe the isomorphisms in these two theorems explic-
itly. The isomorphism involving the cohomology ring is obvious: a class α ∈
H2n−2k(M,Λ) is mapped to the tropical fan consisting of the k-dimensional cones C
in ∆⊥ with weights α · TC . (We recall that TC is the orbit corresponding to C in
the toric variety.)

The isomorphism between the ring of conditions and the ring of tropical fans
requires a longer discussion, which occupies the next two subsections.

4.2.3. The Kushnirenko–Bernstein theorem and the ring Rn(Λ). Let {Γi} be a fam-
ily of n hypersurfaces in (C∗)n given by the equations Pi = 0, where Pi are Lau-
rent polynomials with Newton polytopes ∆i. The Kushnirenko–Bernstein theorem
(Theorem 2.2.1) can be stated as follows.

Theorem 4.2.6. The intersection number of the hypersurfaces Γi in the ring of
conditions is equal to the lattice mixed volume of the polytopes ∆1, . . . ,∆n .

Let Fi be the tropical (n − 1)-fan dual to ∆i (see Definition 3.3.2). By
Remark 4.2.3, the tropical Kushnirneko–Bernstein theorem (Theorem 3.1.3) takes
the following form in terms of these fans.

Theorem 4.2.7. The intersection number of the hypersurfaces Γi in the ring of
conditions Rn is equal to the intersection number of the tropical fans Fi in the
ring TRn .

Thus, Theorem 4.2.5 can be regarded as a generalization of the Kushnirenko–
Bernstein theorem.

In particular, under the identification of Rn with TRn, every hypersurface is sent
to the dual tropical fan of the Newton polytope of its equation. Since both rings are
generated by their one-dimensional components, this determines the identification
uniquely.

However, there is a more explicit description of the tropical fan corresponding
to a cycle of arbitrary codimension. It will be given in the next subsection.
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4.2.4. Tropical fans of torus subvarieties. Associated with every k-dimensional
variety V ∈ (C \ {0})n is its class in the ring of conditions encoded by the tropical
fan TV , the tropicalization of V . We describe this fan more explicitly. This has
already been done for zero-dimensional cycles and hypersurfaces, and now we do
the same for an arbitrary k.

The support of TV is the k-dimensional skeleton Σ of a complete fan such that
the corresponding toric variety X is a good compactification of V , that is, the
closure V intersects the orbits of codimension k at isolated points. Therefore, for
every such orbit σ, its intersection number iσ with V is well defined. Ascribing
weight iσ to the cone of Σ corresponding to σ, we turn Σ into a balanced weighted
fan, which is equal to TV .

It turns out (see [62]) that after an appropriate choice of the fan Σ, the clo-
sure V will have the Cohen–Macaulay property at every point of intersection with
the k-dimensional orbit σ of the toric variety X. This simplifies the algebraic calcu-
lation of the intersection number iσ (see, for example, the explicit algebraic formula
in [43]).
4.2.5. Relationship with correspondence theorems. Let A ∋ 0 be a finite set of
monomials in two variables. We write CA

1 for the space of all polynomials that
are linear combinations of these monomials with constant term 1. Recall that the
Severi variety Sd of plane curves with d nodes is the closure in CA

1 of the set of all
polynomials φ such that the equation φ = 0 determines a reduced irreducible curve
in (C \ {0})2 with d simple self-intersection points and no other singularities.

Mikhalkin’s correspondence theorem can be interpreted as follows in terms of
the tropical fan TSd of the Severi variety.

The correspondence theorem studies the number of curves in Sd passing through
a fixed set of q generic points z1, . . . , zq in the plane (where q is the unique number
such that the number of such curves is finite and positive).

Let Hi ⊂ CA
1 be the incidence hyperplane {φ | φ(zi) = 0}. We note that the

desired curves correspond to the points of intersection of the variety Sd and
the hyperplanes Hi.

Thus, the desired quantity is the intersection number of Sd and the planes Hi.
It is equal to the intersection number of their tropical fans TSd and THi. This
number is by definition equal to the weighted number of points of intersection
of TSd and the tropical hypersurfaces Ni that are shifts of the fans THi by generic
vectors.

The tropical hypersurface Ni can be interpreted as an incidence set. Regarding
the ambient space TA

1 as the space of tropical polynomials with support A ∋ 0 and
constant term 1, we write Ni as {φ | φ(zi) = 0}, where φ is a tropical polyno-
mial, zi is a generic point of the tropical plane, and equality to zero is understood
as in § 3.1 (that is, zi lies on the tropical curve defined by the polynomial φ).

Then it turns out that the polynomials φj that are points of intersection of TSd

and the Nj define precisely the nodal tropical curves (in the sense of Mikhalkin’s
correspondence theorem) passing through the generic points zi.

Thus, if we know the tropical fan of the Severi variety Sd, then the tropical
correspondence theorem for curves with d simple self-intersection points can be
deduced from this description. (Note, however, that this tropical fan is fully known
only for small d.)
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More generally, if A is a finite set of monomials in n variables and S ⊂ (C\{0})A

is the closure of the set of all polynomials φ such that the hypersurface φ has
a prescribed set of singularities, then it suffices to know the tropical fan TS in
order to establish a tropical correspondence theorem for hypersurfaces with a given
support set of the equation and a given set of singularities.

In particular, such information is available for the set of all hypersurfaces
with one non-trivial singularity, that is, for the Gelfand–Kapranov–Zelevinsky
A-discriminant [21]. This made it possible to obtain a tropical correspondence
theorem for such hypersurfaces in [45]. In § 3.5 we sketched a proof of this result
for n = 2.

Subsequently, the tropical fan of the set of hypersurfaces with two non-trivial
singularities was described in [16] (see also [12] in the case when n = 1). This
description is based on the calculus of characteristic classes of subvarieties of a com-
plex torus with values in the ring of conditions. The next subsection is devoted to
this calculus.

4.3. Tropical characteristic classes. For brevity, we denote by Ck the compo-
nent of codimension k in the ring of conditions C of the complex torus (C \ {0})n.
The existence of the following object was proved in [16].

Definition 4.3.1. A tropical characteristic class is a map which sends every alge-
braic subset V ⊂ (C \ {0})n to an element ⟨V ⟩ = ⟨V ⟩0 + · · ·+ ⟨V ⟩n ∈ C, ⟨V ⟩i ∈ Ci,
and has the following properties:

1) If V ⊂ (C \ {0})n is of codimension k, then ⟨V ⟩i = 0 for i < k, ⟨V ⟩k is the
class of V in Ck, and ⟨V ⟩n ∈ C0 = Z coincides with the Euler characteristic e(V ).

2) For arbitrary U , V ⊂ (C \ {0})n and a generic g ∈ (C \ {0})n we have
⟨U ∩ gV ⟩ = ⟨U⟩⟨V ⟩.

3) For complex tori X and Y and any algebraic subsets U ⊂ X and V ⊂ Y we
have ⟨U × V ⟩ = ⟨U⟩ × ⟨V ⟩.

4) The map sending the characteristic function of V to ⟨V ⟩ extends by linearity
to the space of all constructive functions (C \ {0})n → Z. In particular, ⟨U ∩ V ⟩+
⟨U∪V ⟩ = ⟨U⟩+⟨V ⟩. (We recall that a constructive function is a linear combination
of the characteristic functions of algebraic sets.)

5) Given a morphism p : X → Y of complex tori and an algebraic subset V ⊂ X,
we have p∗⟨V ⟩ = ⟨p∗V ⟩. Here p∗V : Y → Z is the MacPherson direct image of V ,
the value of which at y ∈ Y is set to be e

(
p−1(y) ∩ V

)
.

6) For a smooth toric compactification X ⊃ (C \ {0})n such that the affine
characteristic class ⟨V ⟩ is contained in the cohomology ring H•(X) ⊂ C, this class
is Poincaré dual to the Schwartz–MacPherson class of V in X (see [44] and [52]).

Note that the affine characteristic class is uniquely determined by property 6) as
well as by 1)–5). It is also important to stress that in 6) we take the characteristic
class of the non-closed (in X) constructive set V rather than of its closure.

We now calculate ⟨V ⟩ assuming that V is a good variety, that is, one can find
a fan Σ such that the closure of V in the corresponding toric compactification
XΣ ⊃ (C \ {0})n is smooth and intersects the orbits in XΣ transversally.

For every cone Γ ∈ Σ, we denote by VΓ the intersection of the closure of V and
the Γ-orbit in XΣ.
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Assertion 4.3.2 ([16], see also [23]). If V is a good variety, then the class ⟨V ⟩i ∈ Ci

is represented by the weighted fan (P,φ), P ⊂ Qn , φ : P → Q, where P is the union
of all cones of codimension i in Σ, and the value of φ on each such cone Γ is equal
to the Euler characteristic e(VΓ).

Example 4.3.3. If V is a generic hypersurface with Newton polytope ∆, then
a calculation of e(VΓ) by the Kushnirenko formula yields ⟨V ⟩ = [∆]/(1 + [∆]) or
⟨V ⟩i = −(−[∆])i, where [B] is the dual tropical fan of a polytope B (see Defini-
tion 3.3.2).

Furthermore, if V1, . . . , Vk is a k-tuple of generic hypersurfaces with Newton
polytopes ∆1, . . . ,∆k, then in view of the multiplicativity of affine characteristic
classes, we have

⟨V1 ∩ · · · ∩ Vk⟩ =
[∆1] · · · [∆k]

(1 + [∆1]) · · · (1 + [∆k])
. (4.4)

In particular, this yields the formula in [35] for the Euler characteristic of a non-
degenerate complete intersection. Furthermore, the right-hand side of (4.4), which
appeared as a formal expression in [35] and subsequent publications, becomes geo-
metrically meaningful.

5. Good compactifications of torus subvarieties

We shall show that for every m-dimensional algebraic variety X ⊂ (C∗)n there
is a fan W such that the corresponding toric compactification MW ⊃ (C∗)n pos-
sesses the following property: the closure of X is disjoint from the orbits of MW

of codimension greater than m. We shall describe all toric compactifications with
this property and give a qualitative description of the set of asymptotic values of
meromorphic curves lying on X.

Toric varieties form a remarkable class of completions of (C∗)n. Let X be an
algebraic subvariety of the torus (C∗)n. How can we choose a toric compactifica-
tion MW such that the closure X ⊂MW of X has the simplest structure?

When X is given by a sufficiently generic system of polynomial equations with
fixed Newton polytopes, we can choose a non-singular projective toric compactifi-
cation MW in such a way that the variety X ⊂MW is non-singular and transversal
to all the orbits of MW (see [34]). There are many compactifications MW with this
property. All of them can be described explicitly in terms of the Newton polytopes
of the defining equations of X. This construction enables one to calculate the prin-
cipal discrete invariants of X explicitly in terms of Newton polytopes. The theory
of Newton polytopes relies on this construction to a considerable extent.

When X is a singular variety, X is also singular for every toric compactification
(since X = X ∩ (C∗)n). Even when X is non-singular, there is, generally speaking,
no compactification MW such that X is transversal to the orbits of MW or at least
smooth.

However, for every variety X all of whose components are of dimension m, one
can choose a toric compactification MW in such a way that X is disjoint from
those orbits of MW whose codimension is greater than m. There are many com-
pactifications MW with this property, and some of them are smooth projective
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compactifications. They can all be described explicitly in terms of the Bergman
cone of X (see below). This section is devoted to a proof and a thorough discussion
of this theorem. We build upon the tropical basis theorem (see, for example, [32]),
but make no use of its proof. Below we discuss the statement of this theorem in
detail and provide some relevant additional information.

We now present one of the central results in this section. It can be stated without
any mention of toric varieties. The leading term of the germ of a meromorphic
curve f : (C, 0) → (C∗)n, f(t) = atk + · · · , is equal to atk, where a ∈ (C∗)n and
tk = (tk1 , . . . , tkn). A ray l = {λk}, λ ⩾ 0, is said to be essential for a subvariety
X ⊂ (C∗)n if there is a curve germ f : (C, 0) → X such that the vector degree k of
its leading term is non-zero and lies in l. By Theorem 5.4.6, for a variety X all of
whose components are of dimension m there exists a so-called Bergman cone B(X)
with the following properties: 1) B(X) ⊂ (Rn)∗ is a finite union of m-dimensional
closed rational cones1; 2) a ray l is essential for X if and only if l ∈ B(X) and l is
a rational ray.

Note that this cone coincides with the support of the tropical fan of X, which was
defined in § 4. This fact is known as Kapranov’s theorem (see, for example, [13]).

The first construction associating a real m-dimensional cone K(X) in (Rn)∗

with every m-dimensional variety X ⊂ (C∗)n appeared in Bergman’s pioneering
paper [3]. His definition of the cone K(X) was based on analysis instead of algebra;
it differs substantially from the definition of B(X), nevertheless K(X) = B(X).
The definition of K(X) and the equality K(X) = B(X) are unimportant for our
description of the ring of conditions, and we do not consider this in the present
paper.

5.1. The tropical basis theorem. In this subsection we recall the theorem on
the existence of a tropical basis in any ideal of the ring of Laurent polynomials in n
variables [32]. This theorem plays a key role in our paper. We also prove some
ramifications of this result.

5.1.1. The torus, its characters, and Laurent polynomials. Associated with the
torus (C∗)n is the character space Rn, which contains the character lattice Zn.
A point m = (m1, . . . ,mn) ∈ Zn in this lattice can be identified with the character
(a monomial) χm = zm = zm1

1 · · · zmn
n .

A Laurent polynomial P =
∑

cmz
m is a linear combination of the monomi-

als zm with complex coefficients cm. Laurent polynomials are regular functions
on the torus (C∗)n, and every rational function P : (C∗)n → C without poles on
the torus is a Laurent polynomial. The support S(P ) of a Laurent polynomial
P =

∑
cmz

m is the set of points m ∈ Zn such that cm ̸= 0. The Newton poly-
tope ∆(P ) of a Laurent polynomial P is the convex hull of the support S(P ) in the
space of characters Rn.

The truncation P (ξ) of order ξ of a Laurent polynomial P =
∑

cmz
m can be

defined for every linear function ξ : Rn → R on this space. By definition, P (ξ) =

1In this section we write Rn (resp. (Rn)∗) for the character space (resp. the space of
one-parameter subgroups) of the torus (C∗)n.
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m∈B

cmz
m, where B is the subset of S(P ) on which the linear function ξ attains

its minimum.
We write R for the ring of Laurent polynomials on (C∗)n. For every ideal I in R

and every order ξ we have an ideal I(ξ) generated by the truncations of order ξ of
all Laurent polynomials in I. (When ξ = 0, the ideals I and I(ξ) coincide.)
5.1.2. Tropical bases of ideals. A finite set {Qj} ⊂ I is called a tropical basis of
an ideal I if, for every order ξ, the ideal I(ξ) is generated by the Laurent polyno-
mials {Q(ξ)

j }. The ring R possesses the following tropical Noether property: every
ideal I of R has a tropical basis. Here we state the relatively recent [32] strongest
version of this known theorem.

Consider an arbitrary bounded domain U in the character space Rn. A finite set
M ⊂ I is called a U -approximation of the ideal I if, for every P ∈ I with ∆(P ) ⊂ U
there exists a Q ∈ M such that ∆(Q) = ∆(P ). For a fixed domain U , in every
ideal I there exists a U -approximation containing at most N(U) elements, where
N(U) is the number of distinct lattice polytopes in U . We fix the standard metric
in Rn and write Bρ for the open ball of radius ρ centred at the origin.

Theorem 5.1.1 (tropical basis theorem). There exists a function R = R(r, n)
such that if ∆(P ) ⊂ Br for all elements P in some basis of the ideal I , then every
BR-approximation of I is a tropical basis of I .

The proof of this theorem uses Seidenberg’s theorem (which sharpens the Noether
property of the polynomial ring) and the technique of Gröbner bases. The func-
tion R(r, n) featuring in the theorem can be described explicitly. But the theorem
can have no practical applications since R(r, n) grows too rapidly as a function of n.
5.1.3. Results supplementary to the tropical basis theorem. We need some results
supplementary to the tropical basis theorem. Let ξ̄ = (ξ1, . . . , ξk) be an ordered
tuple of covectors. It defines a map πξ̄ : Rn → Rk by πξ̄(x) = (⟨ξ1, x⟩, . . . , ⟨ξk, x⟩) ∈
Rk. For every monomial m ∈ Zn ⊂ Rn its ξ̄-degree is q = πξ̄(m) ∈ Rk. A Laurent
polynomial P is said to be homogeneous of ξ̄-degree q if all the monomials occurring
in P are of ξ̄-degree q. We endow the space Rk with lexicographical ordering (that
is, (x1, . . . , xk) > (y1, . . . , yk) if there is a p ⩽ k such that xi = yi for each i < p
and xp > yp).

For every tuple ξ̄ the truncation P (ξ̄) of multi-order ξ̄ of the Laurent polynomial
P =

∑
cmz

m can be defined as P (ξ̄) =
∑
m∈B

cmz
m, where B is the subset of the

support S(P ) of P on which the ξ̄-degree πξ̄(m) attains its minimum value.

Lemma 5.1.2. Let A ⊂ Zn be a finite set and let ξ̄ be a fixed tuple of covec-
tors. Then there exists a ξ ∈ (Rn)∗ such that for any m1,m2 ∈ A the inequalities
πξ̄(m1) > πξ̄(m2) and ⟨ξ,m1⟩ > ⟨ξ,m2⟩ are equivalent.

Proof. Put M = maxξi∈ξ̄,m∈A |⟨ξi,m⟩|, where the ξi are the covectors in ξ̄ and
m ∈ A. We can easily verify that it suffices to choose ξ to be ξ1 +εξ2 + · · ·+εk−1ξk,
where 0 < ε < max{1,M/(M + 1)}. □

For every ideal I of the ring R and every multi-order ξ̄ there is an ideal I(ξ̄)

generated by the truncations of multi-order ξ̄ of all the Laurent polynomials in I.
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Theorem 5.1.3. If {Qj} is a tropical basis of I , then for every multi-order ξ̄ the
truncations {Q(ξ̄)

j } form a basis of I(ξ̄) .

Proof. We need to prove that, for every P ∈ I, the truncation P (ξ̄) lies in the
ideal generated by {Q(ξ̄)

j }. Let A be the union of the supports of the Laurent
polynomials P and {Qj}, and let ξ be the covector from the previous lemma. Then
P (ξ̄) = P (ξ) and {Q(ξ̄)

j } = {Q(ξ)
j }. The required assertion now follows from the

definition of a tropical basis. □

Every Laurent polynomial P expands into a sum of homogeneous components
with respect to the ξ̄-degree: P =

∑
q∈Rk

Pq, where Pq is a homogeneous Laurent

polynomial of ξ̄-degree q.

Lemma 5.1.4. Along with every Laurent polynomial P , the ideal I(ξ̄) contains all
its homogeneous components Pq with respect to the ξ̄-degree. Under the hypotheses
of the previous theorem, Pq can be written in the form Pq =

∑
j

QjTj , where the

sums of the ξ̄-degrees of the polynomials Qj and Tj are equal to q .

Proof. By definition, the ideal I(ξ̄) is generated by ξ̄-homogeneous Laurent poly-
nomials. The lemma can be proved in exactly the same way as for ideals that are
homogeneous with respect to the ordinary degree. □

5.2. The closure of X ⊂ (C∗)n in an affine toric variety. Let R be the ring
of Laurent polynomials, let Σ ⊂ (Rn)∗ be a fan consisting of a cone σ and all its
faces, let MΣ be the corresponding affine toric variety, and let RΣ be the ring of
regular functions on MΣ. A Laurent polynomial f belongs to RΣ if and only if the
Newton polytope ∆(f) lies in the cone CΣ = {x ∈ Rn | ⟨x, σ⟩ ⩽ 0} dual to σ.

Lemma 5.2.1. If f ∈ R and fk ∈ RΣ for some k > 0, then f ∈ RΣ .

Proof. Let ∆(f) be the Newton polytope of a Laurent polynomial f . By hypothesis,
∆(fk) = k∆(f) ⊂ CΣ. It follows that ∆(f) ⊂ CΣ, that is, f ∈ RΣ. □

Given an ideal I of the ring R of Laurent polynomials, we write IΣ for the ideal
I ∩RΣ of the ring RΣ. The following fact is a corollary of the lemma just proved.

Corollary 5.2.2. If f ∈ R and fk ∈ IΣ , then f lies in the radical of the ideal
IΣ ⊂ RΣ . If I ⊂ R is a radical ideal, then so is IΣ ⊂ RΣ .

Let O be an orbit of the lowest dimension in MΣ. One can identify O with
a torus which is a quotient group of (C∗)n. Let LΣ be the maximal linear subspace
lying in CΣ. The characters of the torus O can be identified with points of the
lattice Zn ∩ LΣ. The ring R(O) of regular functions on O can be identified with
the subring of R consisting of all Laurent polynomials whose Newton polytopes lie
in LΣ.

Given a function F ∈ RΣ, we denote the restriction of F to O by F |O. The map
F → F

∣∣
O

is a ring homomorphism of RΣ onto R(O). The lattice points m ∈ CΣ

not lying in LΣ correspond to the characters χm ∈ RΣ such that χm

∣∣
O
≡ 0. This

can be stated as follows.
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Assertion 5.2.3. If ∆(F ) ∩ LΣ = ∅, then F
∣∣
O
≡ 0.

Definition 5.2.4. A Laurent polynomial F ∈ RΣ is said to be Σ-reduced if the
support function of the polytope ∆(F ) vanishes on σ.

The following assertion is obvious.

Assertion 5.2.5. A Laurent polynomial f ∈ RΣ is Σ-reduced if and only if ∆(f)∩
LΣ ̸= ∅.

Let I(O,Σ) be the image of IΣ ⊂ RΣ under the homomorphism sending every
function F ∈ RΣ to its restriction F

∣∣
O

to the orbit O. Let ξ be any covector
in the interior |σ0| of the support of σ. Every element of I(O,Σ) is a Laurent
polynomial Q(ξ), where Q is a Σ-reduced Laurent polynomial in the ideal I ⊂ R
and Q(ξ) is the truncation of Q of order ξ.

Theorem 5.2.6. A set X ∩O coincides with the set of zeros of the ideal I(O,Σ) ⊂
R(O) . In other words, X ∩ O is given in the orbit O by the system of equations
{Q(ξ)

α = 0}, where Qα ranges over the set of all Σ-reduced Laurent polynomials in
I ⊂ R .

Proof. The intersection X ∩O is given by the system of equations F
∣∣
O

= 0, where
F ∈ IΣ. □

Remark 5.2.7. The ideal I(O,Σ) ⊂ R(O) need not be radical even when IΣ ⊂ RΣ is;
the variety X may be tangent to the orbit O.

A Laurent polynomial F is said to be Σ-reducible if the support functionH∆(F ) of
its Newton polytope is linear on the support of σ, that is, if H∆(F )(ξ) = ⟨ξ,m(F )⟩
for every ξ ∈ |σ|. The point m(F ) ∈ Zn is determined by this equality up to
adding any point of the lattice LΣ ∩ Zn. The Laurent polynomial F̃ = Fx−m(F )

is called the Σ-reduction of F . (The Σ-reduction makes sense only for Σ-reducible
Laurent polynomials and is uniquely determined up to multiplication by χk, where
k ∈ LΣ ∩ Zn.)

Suppose that, for some ξ ∈ |σ0|, the ideal I ⊂ R has a basis {Qj} consisting of
Σ-reducible Laurent polynomials Qj . We fix a set {Q̃j} of Σ-reductions of these
Laurent polynomials.

Corollary 5.2.8. Under these assumptions, {Q̃(ξ)
j } is a basis of the ideal I(O,Σ) ⊂

R(O) .

5.3. The tropical basis of an ideal and the closure of its zero locus.

5.3.1. The tropical basis and affine toric varieties. Here we continue to use the
notation of § 5.2. Assuming that {Qj} is a tropical basis of an ideal I ⊂ R, we say
that the fan Σ of an affine toric variety is convenient for this basis if all {Qj} are
Σ-reducible Laurent polynomials. The following assertion can easily be verified.

Assertion 5.3.1. A fan Σ is convenient for {Qj} if and only if |σ| belongs to
a cone in the dual fan ∆⊥

b of the polytope ∆b =
∑

∆(Qj).
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We fix some Σ-reductions {Q̃j} of all the Laurent polynomials of a tropical
basis {Qj} of an ideal I ⊂ R. The functions {Q̃j} are regular on the affine toric
variety MΣ.

Theorem 5.3.2. The closure X ⊂ MΣ of the zero locus X ⊂ (C∗)n of I can be
given in MΣ by the system of equations {Q̃j = 0}.

Proof. The variety MΣ splits into orbits under the action of (C∗)n. For every orbit
we claim that the set of solutions of the system that belong to this orbit is equal to
its intersection with X. Indeed, this clearly holds for the (C∗)n-orbit of maximum
dimension since the set of solutions of the system in the torus is equal to X. For
an orbit O of minimum dimension, this follows from Corollary 5.2.8 since, by the
definition of a tropical basis, the Laurent polynomials Q̃(ξ)

j generate the ideal I(ξ).
Every orbit O1 of intermediate dimension corresponds to a face γ of σ. Let Γ be
the fan consisting of the cone γ and its faces. Then the orbit O1 is contained in
the affine toric variety MΓ ⊂ MΣ and is an orbit of minimum dimension in this
variety. All the Laurent polynomials Q̃j are Γ-reduced. (The support functions of
their Newton polytopes vanish on |γ| since |γ| ⊂ |σ|.) The case of the orbit O1 can
now be studied in the same way as that of O. □

The Laurent polynomials Q̃j are Σ-reduced. Hence, for ξ ∈ |σ|0, the Q̃(ξ)
j can

naturally be identified with Laurent polynomials in R(O). We denote these Laurent
polynomials by Tj .

Theorem 5.3.3. The functions {Tj} = {Q̃(ξ)
j } form a tropical basis of the ideal

I(O,Σ) in the ring R(O) .

Proof. The space LΣ ⊂ Rn is orthogonal to the cone |σ|, and the lattice Λ = LΣ∩Zn

in this space can naturally be identified with the lattice of characters of the quotient
group O of the torus (C∗)n. Let α ∈ L∗Σ be an arbitrary covector of LΣ and let α̃ ∈
(Rn)∗ be any covector of Rn such that π∗(α̃) = α, where π : LΣ → Rn is the natural
embedding. Consider the pair of covectors ξ̄ = (ξ, α̃). By Theorem 5.1.3, the
functions {Q̃(ξ̄)

j } form a basis of the ideal I(ξ̄). The functions {Q̃(ξ̄)
j } are naturally

identified with the Laurent polynomials {T (α)
j }. The functions {T (α)

j } form a basis
of the ideal I(ξ̄) in the ring R and, therefore, they form a basis of I(α)

(O,Σ) in R(O). □

Let |γ| ⊂ |σ| be a face of the cone |σ| and let O1 be the corresponding orbit
of MΣ. There are two affine toric varieties related to |γ|.

The first one is the n-dimensional toric variety MΓ constructed from the fan Γ
containing γ and its faces. The variety MΓ is a Zariski open subset of MΣ. It is
the complement of the set of orbits whose closures do not contain O1 (in particular,
O1 ⊂MΓ).

The other one is the (n − dimR γ)-dimensional variety O1, which is the closure
of O1 in MΣ. One can naturally identify O1 with an (n− dimR γ)-dimensional
torus which is a quotient of (C∗)n. The variety O1 is an affine toric variety with
the action of the torus O1. Let LΓ be the maximal linear subspace contained in CΓ.
The characters of the torus O1 can be identified with points in the lattice Zn ∩ LΓ

in the space LΓ ⊂ Rn orthogonal to the cone γ ⊂ (Rn)∗. The ring R(O1) of regular
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functions on O1 can be identified with the subring of R consisting of the Laurent
polynomials whose Newton polytopes lie in LΓ.

Let I ⊂ R be an ideal in the ring R of Laurent polynomials, let {Qj} be
a tropical basis of I, let X be the zero locus of I in the torus (C∗)n, and let X
be the closure of X in MΣ. We denote the intersections of X with the orbits O
and O1 by X0 = X ∩O and X1 = X ∩O1.

Theorem 5.3.4. If all elements of the tropical basis {Qj} are Σ-reducible Laurent
polynomials, then the set of limit points of X1 in the orbit O coincides with X0 .

Proof. We fix some Σ-reductions {Q̃j} of the elements of the tropical basis {Qj}.
The variety X is given by the system of equations Q̃j = 0 in MΣ (see Theo-
rem 5.3.2). The restrictions of these equations to the orbits O and O1 determine X0

and X1.
Consider the affine subvariety MΓ ⊂ MΣ with O1 as its minimal orbit. Let

I(O1,Γ) be the image of IΓ = I ∩ RΓ under the restriction of all functions in RΓ

to O1. Let ξ ∈ |γ0| be a covector. By Theorem 5.3.3, the functions {Tj} = {Q̃(ξ)
j }

form a tropical basis of I(O1,Γ).
We arrive at the lower-dimensional situation we have already studied. In the

torus O1, we have the zero locus X1 of the ideal I(O1,Γ) and the Laurent polyno-
mials {Tj}, which form a tropical basis of I(O1,Γ). The closure O1 of O1 in MΣ is
a toric variety with the action of the torus O1. The cone of O1 in the space of char-
acters is CΣ ∩ LΓ ⊃ LΣ. The Newton polytopes of the Laurent polynomials {Tj}
have non-empty intersections with LΣ and therefore with LΓ. Hence the toric com-
pactification O1 of O1 is convenient for the tropical basis {Tj}. By Theorem 5.3.2,
X1∩O is given by the system of equations

{
Tj

∣∣
O

= 0
}

on O. By the same theorem,
X0 ⊂ O is given by the system of equations

{
Q̃j

∣∣
O

= 0
}

on O. These two systems
of equations coincide. Hence X0 = X1 ∩O. □

5.3.2. Tropical basis and general toric varieties. Fix an algebraic variety Yi ⊂ Oi

in each orbit Oi of a toric variety MW .

Definition 5.3.5. We say that the set of subvarieties Yi ⊂ Oi is compatible with
respect to closure if, for every pair of orbits Oj and Oi such that Oj lies in the
closure of Oi, the variety Yj coincides with the set of limit points of Yi in Oj .

We now extend Theorem 5.3.4 to toric varieties MW that are not affine. Let
X ⊂ (C∗)n be the zero locus of an ideal I and let {Qj} be a tropical basis of I.
We say that a fan W of the toric variety MW is convenient for this basis if all the
elements of {Qj} are Σ-reducible Laurent polynomials for every affine subfan Σ
of W .

Let X be the closure of X in MW . We write Xi = Oi ∩X for the intersections
of X with the orbits Oi of MW .

Theorem 5.3.6. If the fan W is convenient for some tropical basis of I , then the
varieties Xi ⊂ Oi are compatible with respect to closure.

Proof. If Oj lies in the closure of Oi and σj , σi are the cones corresponding to these
orbits, then σi is a face of σj . The orbits Oi and Oj lie in the affine toric variety MΣ
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whose fan Σ consists of the cone σj and all its faces. The desired assertion now
reduces to Theorem 5.3.4. □

Theorem 5.3.7. Suppose that the hypotheses of Theorem 5.3.6 hold. Then
1) the union U of all the orbits O of MW such that X ∩ O ̸= ∅ is a toric

subvariety MW (X) of MW ;
2) if all the components of X are of dimension m and O ⊂ MW (X) is an orbit

of codimension k , then every component of X ∩O has dimension m− k .

Proof. 1) Suppose that an orbit Oj lies in the closure of an orbit Oi. Then, by
Theorem 5.3.6, Xj = X ∩Oj is contained in the closure of Xi = X ∩Oi. Therefore,
if Xi = ∅, then also Xj = ∅. Hence U is Zariski open and MW (X) is a toric variety.

2) If Oi ⊂ MW (X) is an orbit of codimension 1, then it is adjacent to the orbit
O0 = (C∗)n, that is, Oi is a smooth hypersurface in the toric variety Oi ∪ O0.
The variety Xi consists of the limit points of X in the hypersurface. Hence all the
components ofXi are of dimensionm−1. Suppose that the theorem has been proved
for orbits of codimension p− 1. If Oj ⊂MW (X) is an orbit of codimension p, then
it is adjacent to some orbit Oi of codimension p − 1. In this case Oj is a smooth
hypersurface in the toric variety Oj ∪ Oi. The variety Xj consists of the limit
points of Xi in the hypersurface. Hence all the components of Xj are of dimension
m− (p− 1)− 1 = m− p. □

5.4. The Bergman cone of a variety X ⊂ (C∗)n.

5.4.1. A non-invariant definition of the Bergman cone. Let X be a subvariety
of (C∗)n all of whose irreducible components are of dimension m. In Theorem 5.3.7
we introduced the toric variety MW (X). It is not invariantly defined and depends
on the choice of an ideal I whose zero locus is X (it is only the radical of I that
is invariantly defined), on the choice of a tropical basis of I, and on the choice
a convenient fan W for this basis. We define the Bergman cone of X using the
fan W (X). In what follows we shall show that the Bergman cone is an invariant
of X and is independent of the arbitrary choices of the objects used in its definition.

Definition 5.4.1. The Bergman cone B(X) ⊂ (Rn)∗ of a variety X ⊂ (C∗)n is
the support |W (X)| ⊂ (Rn)∗ of the fan W (X) of the toric variety introduced in
Theorem 5.3.7.

The following assertion follows automatically from the definition of the Bergman
cone.

Assertion 5.4.2. The Bergman cone of a variety all of whose components are of
(complex) dimension m is a finite union of closed m-dimensional rational cones.

5.4.2. The asymptotic behaviour of curves lying on a variety. Consider the germ
at 0 ∈ C of a meromorphic map f : (C, 0) → X ⊂ (C∗)n from the complex line
to X. Let z1, . . . , zn be coordinates in (C∗)n and t a coordinate in C. Then, up to
lower-order terms, f can be written in the form f = (a1t

k1 + · · ·, . . . , ant
kn + · · · )

or f = atk + · · · , where a = (a1, . . . , an) ∈ (C∗)n and tk = (tk1 , . . . , tkn). Which
asymptotic patterns f(t) = atk + · · · can occur for curves f : (C, 0) → X ⊂ (C∗)n

on X?
The following two assertions can easily be proved.
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Assertion 5.4.3. For every curve f : (C, 0) → X with asymptotic behaviour f(t) =
atk + · · · , the coefficient a ∈ (C∗)n is a zero of the ideal I(k) .

Proof. The identity P (f(t)) ≡ 0 holds for every P ∈ I. But P (f(t)) = P (k)(a)tm +
· · · , where m = H(∆(P ))(k). Hence P (k)(a) = 0. □

Assertion 5.4.4. If a ∈ (C∗)n is a zero of the ideal I(k) , then there is a curve
f : (C, 0) → X with asymptotic behaviour f(t) = atkq + · · · , where q is a positive
number.

Proof. When k = 0, one can take the constant map f(t) ≡ a for f , where a ∈ X is
a zero of the ideal I. When k ̸= 0, we consider the one-dimensional cone σ in (Rn)∗

generated by the covector k. Let MΣ be a toric variety whose fan Σ contains σ and
the vertex 0. Let Σ be a convenient fan for a tropical basis {Pi} of the ideal I. Then
any P ∈ {Pi} is Σ-reducible for Σ. Let P̃ be a Σ-reduction of P . The intersection
of X with an (n−1)-dimensional orbit O ⊂MΣ is given by the system of equations
P̃ (k) = 0 with P ∈ I. Applying an automorphism of (C∗)n if necessary, we can
assume that σ is the ray (x1, 0, . . . , 0), where x1 ⩾ 0, and the (n − 1)-dimensional
orbit O is given by the equation z1 = 0 in MΣ = C × (C∗)n−1, where z1 is the
coordinate in C. In such coordinates, the Σ-reduction of a Laurent polynomial P
is a Laurent polynomial P̃ all of whose monomials have non-negative degrees with
respect to z1, and P̃ (k) is the sum of monomials in P whose degree with respect
to z1 is equal to zero (the set of such monomials in P̃ must be non-empty). Put
X0 = X ∩O. The zero locus of the ideal I(k) in (C∗)n = C∗× (C∗)n−1 has the form
C∗×X0. Since X0 is the closure of X in O, for every point b ∈ X0 there is a curve
germ f : (C, 0) → X such that limt→0 f(t) = b. The leading term of the asymptotic
formula for this curve has the form ctm:

f = (ctm + · · · , b+ · · · ), where m ⩾ 0, c ̸= 0.

The change of parameter τ = dt enables us to make the coefficient of τm equal
to any non-zero number w. Thus we have constructed a curve in X whose vector
degree (m, 0, . . . , 0) is proportional to k and whose coefficient (w, b) is a prescribed
zero of the ideal I(k) in the torus C∗ × (C∗)n−1 = (C∗)n. □

A covector k ∈ (Zn)∗ ⊂ (Rn)∗ is essential for a variety X ⊂ (C∗)n if there is
a curve f : (C, 0) → X with asymptotic behaviour f(t) = atm + · · · whose vector
degree m is equal to kq, where q > 0.

Corollary 5.4.5. A covector k ∈ (Zn)∗ is essential for the zero locus X ⊂ (C∗)n

of an ideal I ⊂ R if and only if the truncation I(k) of I in the direction of k does
not coincide with the ring R .

The zero covector is essential for every non-empty variety X. Two covectors
differing only by a positive factor are both essential or both not essential for X at
the same time. Recall that a rational ray l ∈ (Zn)∗ ⊂ (Rn)∗ is said to be essential
for a variety X ⊂ (C∗)n if the integer covectors on l are essential for X.

5.4.3. The Bergman cone and essential rays. The following theorem describes the
structure of the set of essential rays for a variety X all of whose components are of
the same dimension m.
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Theorem 5.4.6. Suppose that all the components of a variety X ⊂ (C∗)n are of
dimension m. A rational ray l ∈ (Rn)∗ is essential for X if and only if l belongs to
the Bergman cone B(X) of X . The cone B(X) is equal to the closure of the union
of all essential rays for X .

Proof. Each essential ray l forX is contained in some cone of the fanW (X). Indeed,
if a curve f(t) = atk + · · · with 0 ̸= k ∈ l lies in X, then z = limt→0 f(t) ∈ x,
and therefore z lies in some orbit O ⊂MW (X). Then k ∈ |σ0|, where σ is the cone
in W (X) corresponding to O.

Conversely, suppose that 0 ̸= k ∈ |σ0|, where σ is a cone in W (X). Let Σ be
the fan consisting of σ and its faces. All elements {Qj} of a tropical basis of I
are Σ-reducible Laurent polynomials. The ideal I(k) is generated by the Laurent
polynomials {Q(k)

j }, which coincide for all k ∈ |σ0|. The zero locus of I(k) is
non-empty since the intersection of X and O is non-empty. By Assertion 5.4.4,
there exists a curve f(t) = atkq + · · · on X, where a is a zero of the ideal I(k) and
q > 0. The ray λk, where λ ⩾ 0, is essential for X. □

Theorem 5.4.6 shows that the Bergman cone is invariantly defined. It also enables
us to extend the definition of the Bergman cone to subvarieties X ⊂ (C∗)n with
components which may have differing dimensions.

Definition 5.4.7. The Bergman cone B(X) ⊂ (Rn)∗ of a variety X ⊂ (C∗)n is
the closure of the union of the essential rays for X.

Corollary 5.4.8. 1) B(X ∪ Y ) = B(X) ∪ (Y ).
2) B(X ∩ Y ) ⊂ B(X) ∩ (Y ).
3) B(X) is a finite union of rational cones (of differing dimensions).
4) A rational ray l is essential for X if and only if l ⊂ B(X).
5) For a variety all of whose components are of dimension m, Definitions 5.4.1

and 5.4.7 are equivalent.

Proof. Parts 1) and 2) are obvious. Parts 3) and 4) follow from Theorem 5.4.6 and
part 1). Part 5) follows from Theorem 5.4.6. □

Let X ⊂ (C∗)n be an algebraic variety, MW ⊃ (C∗)n a toric variety, and X the
closure of X in MW .

Theorem 5.4.9. The variety X is complete if and only if B(X) ⊂ |W |.

We shall not prove this theorem (it can be proved in the same way as The-
orem 5.4.6). To state the following result we need to define the m-dimensional
skeleton Wm of a fan W . Namely, Wm is the subfan of W which contains all the
cones in W of dimension less than or equal to m.

Let X ⊂ (C∗)n be an algebraic variety all of whose components are of dimen-
sion m, let MW ⊃ (C∗)n be a toric variety, and let X be the closure of X in MW .

Theorem 5.4.10. The variety X is complete and disjoint from the orbits of MW

of codimension greater than m if and only if B(X) ⊂ |Wm|.

Proof. If X is complete, then B(X) ⊂ W by Theorem 5.4.9. Suppose that B(X)
intersects |σ0| for some cone σ in W with dimR σ > m. Then X intersects the
orbit O ⊂ MW corresponding to the cone σ, and the codimension of this orbit is
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greater than m. Therefore, if X is disjoint from orbits of codimension > m, then
B(X) ⊂ |Wm|.

Conversely, suppose that B(X) ⊂ |Wm|. Then X ⊂ MWm
⊂ MW . But MWm

contains only orbits of codimension not greater than m. □

6. Rings with Gorenstein duality

6.1. Gorenstein duality. Let A be a commutative associative unital algebra
over a field k. For each k-linear function L : A→ k there is an associated bilinear
form BL on A defined by BL(a, b) = L(ab). If BL is a non-degenerate form, then
we say that it defines Gorenstein duality on A. Each algebra is determined by its
generators and relations between these. If a function L defines Gorenstein duality
on an algebra, then the latter can be recovered uniquely from the values of L on
each polynomial of the generators of the algebra. In this subsection we discuss the
properties of algebras endowed with Gorenstein duality and present two slightly
different ways to describe such algebras.

The cohomology rings of smooth complete n-dimensional toric varieties and the
ring of conditions Rn of the complex torus (C∗)n possess Gorenstein duality. Fur-
thermore, these rings are generated by algebraic hypersurfaces in the corresponding
varieties. For this reason, the cohomology rings of toric varieties and the ring Rn can
be recovered from the intersection numbers of all possible systems of n algebraic
hypersurfaces in the corresponding varieties. Due to the Kushnirenko–Bernstein
theorem, all these intersection numbers can be calculated in terms of the volumes
of the Newton polytopes of the defining equations of the hypersurfaces. Hence,
these rings can be described it terms of the volumes of convex lattice polytopes
in Rn. At the end of this section (see § 6.3.2) we present two such descriptions,
which differ slightly from one another.

6.1.1. Algebras with Gorenstein duality. Let M1 and M2 be two (possibly infinite-
dimensional) linear spaces over the field k. A bilinear form B on M1×M2 is called
a pairing of these spaces. Using a pairing, to each subspace M ⊂M1 we can assign
the orthogonal space M⊥ ⊂M2 of all vectors b ∈M2 such that B(a, b) = 0 for each
a ∈M .

A pairing is said to be non-degenerate if B is a non-degenerate form, that is,
if 1) for each a ∈ M1 \ {0} there exists a b ∈ M2 such that B(a, b) ̸= 0, and 2) for
each b ∈M2 \ {0} there exists an a ∈M1 such that B(a, b) ̸= 0.

A non-degenerate pairing defines an embedding of M2 into the dual space M∗
1

of M1, which assigns to each b ∈M2 the linear function lb on M1 for which lb(a) =
B(a, b). If M1 is a finite-dimensional space, then the embedding establishes an
isomorphism between M2 and M∗

1 ; in particular, dimM1 = dimM2.
Let A be a commutative associative unital algebra over k.

Definition 6.1.1. For each k-linear function L : A → k there is an associated
symmetric k-bilinear form BL on A defined by

BL (a, b) = L (ab) ∈ k.

The linear function L on A defines Gorenstein duality if BL is a non-degenerate
form.
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Example 6.1.2. Let A be a subspace of L2(Rn, dµ) that is closed under multipli-
cation of functions. Let L be the functional that assigns to each function f ∈ A

the integral
∫

Rn

fϕ dµ, where ϕ ∈ A is a weight function such that the set ϕ−1(0)

has measure zero. Then L defines Gorenstein duality on A. Indeed, if f ̸= 0, then

BL(f, ϕf) =
∫

Rn

f2ϕ2 dµ > 0.

Example 6.1.3. Let A be the C-algebra of complex-valued functions on a finite
set X. Let L be the functional that assigns to a function f ∈ A the complex
number

∑
x∈X

f(x)ϕ(x), where ϕ ∈ A is a weight function none of whose values

is 0. The functional L defines Gorenstein duality on A (because BL(f, ϕ̄f̄) =∑
x∈X

|f(x)|2|ϕ(x)|2 > 0 if f ̸= 0).

Example 6.1.4. Let M be a compact oriented real manifold of even dimension 2n
and with no boundary. Let A be the commutative subalgebra of the cohomology
ring H∗(M,R), which consists of linear combinations of even-dimensional elements,
that is, α ∈ A if

α =
∑

0⩽k⩽n

α2k, (6.1)

where α2k ∈ H2k(M,R). Let L be the functional that sends α ∈ A given by (6.1) to
the value of the cohomology class α2n on the fundamental cycle of M . By Poincaré
duality, BL is a non-degenerate form and L defines Gorenstein duality on A.

Lemma 6.1.5. Let BL ba a (possibly degenerate) form on A . Then
1) the orthogonal space J⊥L ⊂ A of an ideal J ⊂ A with respect to BL is an

ideal of A ;
2) the kernel kerBL of BL is an ideal of A .

Proof. 1) Let b ∈ J⊥L and c ∈ A . Then for each a ∈ J we have BL (bc, a) =
L (bca) = 0 because ca ∈ J . Hence J⊥L is an ideal of A .

2) The kernel kerBL is orthogonal to A with respect to BL . Hence part 2) is
a consequence of 1). □

The annihilator Jan of an ideal J ⊂ A is the ideal consisting of all a ∈ A such
that ab = 0 for all b ∈ J .

Lemma 6.1.6. If BL is a non-degenerate form, then J⊥L = Jan for each ideal
J ⊂ A.

Proof. The inclusion Jan ⊂ J⊥L is clearly true even when BL is degenerate. Con-
versely, suppose that for some a ∈ J⊥L there exists a b ∈ J such that ab ̸= 0. Then,
since BL is non-degenerate, there exists a c ∈ A such that L((ab)c) ̸= 0. Hence
L(a(bc)) ̸= 0 and a is not orthogonal to bc ∈ J . This contradiction shows that
Jan ⊃ J⊥L , and therefore Jan = J⊥L . □

Corollary 6.1.7. If L defines Gorenstein duality on A, then for each ideal J ⊂ A
the ideal J⊥L is independent of the choice of L.
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Corollary 6.1.8. If Gorenstein duality exists on A, then
1) for each ideal J of finite codimension m = dimA/J the ideal Jan is finite-

dimensional and Jan = m; furthermore, (Jan)an = J ;
2) for each ideal J of finite dimension m = dim J the ideal Jan has finite codi-

mension and dimA/Jan = m; furthermore, (Jan)an = J .

Proof. If the form BL is non-degenerate, then it induces an isomorphism of the
spaces (A/J)∗ and J under the assumptions in 1). Under the assumptions in 2), it
induces an isomorphism of the spaces J and (A/J)∗. □

This corollary establishes necessary conditions for Gorenstein duality to exist
on an algebra A. In the next subsection we show that for local algebras these
conditions are sufficient.

6.1.2. Local algebras with Gorenstein duality. In this subsection we consider com-
mutative associative unital k-algebras A with the following properties:

(a) A is a local algebra, that is, A contains a unique maximal ideal m;
(b) the residue field A /m is isomorphic to the ground field k;
(c) there exists a positive integer k such that mk = 0.
Let man ⊂ A be the annihilator of the maximal ideal m of an algebra A with

properties (a)–(c).

Lemma 6.1.9. 1) Each non-trivial ideal I ⊂ A contains a non-zero element m
of man .

2) The ideal (m) generated by an arbitrary non-zero element m ∈ man is a one-
dimensional space over k.

Proof. 1) Let l be the largest integer such that the ideal I ·ml is non-trivial. Each
non-zero element m of I ·ml lies in man because m ·m ⊂ I ·ml+1 = 0.

2) Since m ·m = 0, it follows that m ·A = m · (A /m) = m · k. □

Lemma 6.1.10. The bilinear form BL on an algebra A with properties (a)–(c) is
non-degenerate if and only if L does not vanish at any non-zero element m of man .
Gorenstein duality can be defined on A if and only if man is a one-dimensional
space over k.

Proof. Suppose that L does not vanish at any non-zero elements of man. Applying
part 1) of Lemma 6.1.9 to the principal ideal (a) = I generated by a non-zero
element a ∈ A , we can see that there exists a b ∈ A such that ab is non-zero and
ab ∈ man. Hence the form BL is non-degenerate.

If L vanishes at a non-zero element a ∈ man, then a lies in the kernel of BL ,
and therefore the form BL is degenerate. If the k-linear space man has dimension
greater than 1, then every linear function L vanishes at some non-zero element
a ∈ man. Hence all the bilinear forms BL on A are degenerate.

On the other hand, if the space man is one-dimensional and L is not identically
zero on man, then the form BL is non-degenerate. □

6.1.3. Quotient algebras with Gorenstein duality. In this subsection we describe
all quotient algebras of a commutative associative unital algebra A that can be
endowed with Gorenstein duality.

Consider the action ρ of A on the dual space A ∗ induced by multiplication
in A : for a linear function L ∈ A ∗ and an element w ∈ A the function ρ(w)L is
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defined by ρ(w)L (v) = L (wv). With every linear function L ∈ A ∗ we associate
the set JL ⊂ A of all elements w such that Lw = ρ(w)L is identically equal to
zero. By definition, JL coincides with the kernel of BL . By Lemma 6.1.5, JL ⊂ A
is an ideal of A .

Theorem 6.1.11. 1) The function L : AL → k induced by L on the quotient
algebra AL = A /JL defines Gorenstein duality.

2) Conversely, assume that a k-linear function L on the quotient algebra
A = A /J defines Gorenstein duality. Then J = JL , where L = π∗L with
π : A → A /J being the factorization homomorphism.

Proof. 1) The function L vanishes on JL because L (w) = Lw(e) = 0 if w ∈ JL .
Hence L induces a function L on A /JL . The kernel of BL is trivial, for if x ∈
kerBL, then w = π−1(x) ∈ kerBL , where π : A → A /J is the factorization
homomorphism. Therefore, w ∈ JL and x = π(w) = 0.

2) If the form BL on A /J is non-degenerate, then the kernel of BL on A , where
L = π∗L, coincides with J ⊂ A . □

Using this theorem, we can find quotient algebras of A endowed with Gorenstein
duality with the help of a non-zero linear function L on A .

Example 6.1.12. Let A = C{{x1, . . . , xn}} be the ring of analytic function germs
at 0 ∈ Cn. Suppose that f1, . . . , fn ∈ A and 0 is an isolated root of the system of
equations

f1 = · · · = fn = 0. (6.2)

On A = C{{x1, . . . , xn}} we can define a linear functional L whose value at a germ
h ∈ A is given by

L (h) =
1

(2π)n

∫
|f1|=···=|fn|=ε

h(x) dx1 ∧ · · · ∧ dxn

f1 · · · fn
,

where ε is a sufficiently small positive number. The functional L on A defines the
quotient algebra AL possessing Gorenstein duality. We can show that the quotient
algebra AL coincides with the finite-dimensional local C-algebra

A = A /(f1, . . . , fn)

connected with the 0 root of the system (6.2). The minimal ideal man of A is
generated by the germ of the Jacobian

J(x) =
∂(f1, . . . , fn)
∂(x1, . . . , xn)

of the system (6.2) at 0. The value of L at J is the multiplicity µ of the 0
root of (6.2). A linear function L : A→ C defies a non-degenerate form BL on A if
and only if L(J) ̸= 0.

Example 6.1.13. The above example also has a real version. Let A =
R{{x1, . . . , xn}} be the ring of germs of real analytic functions at 0 ∈ Rn. Let
f1, . . . , fn ∈ A , and assume that the local R-algebra

A = R{{x1, . . . , xn}}/(f1, . . . , fn)
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is finite-dimensional.
Gorenstein duality exists on A. The minimal ideal man of A is generated by the

germ at 0 of the Jacobian J of the system f1 = · · · = fn = 0. A linear function
L : A→ R defines a non-degenerate real form BL on A if and only if L(J) ̸= 0.

Consider the germ of the vector field V = (f1, . . . , fn) at 0 ∈ Rn. The classical
Eisenbud–Levine formula gives the index of the vector field V at 0. Namely, the
index of V is equal to the signature of the quadratic form K on A defined by K(f) =
L(f2), where L is an arbitrary real R-linear function on A such that L(J) > 0.

6.1.4. The symmetric algebra of a linear space. With a k-linear space M we asso-
ciate its symmetric algebra S (M), which is the free associative commutative unital
k-algebra generated by the vectors in M . The elements of S (M) can be regarded
as formal polynomials in vectors from M with coefficients in k. This gives a graded
algebra

S (M) = A0 + A1 + · · ·+ Ak + · · · , (6.3)

whose component A0 is equal to the field k and whose components Ak for k > 0
consist of the formal homogeneous polynomials of degree k in vectors from M .

Consider the commutative algebra A with identity element e generated as an
algebra by the elements of some k-linear subspace V ⊂ A. Fix a k-linear map
π : M → V of M onto V . Then π extends to an algebra homomorphism π : A → A
of A = S (M) onto A.

Theorem 6.1.11 has the following consequence.

Theorem 6.1.14. If the algebra A possesses Gorenstein duality, then it is isomor-
phic to S (M)L for some k-linear function L on the symmetric algebra S (M)
of M .

We can see that describing algebras with Gorenstein duality reduces to describing
the dual space of the algebra S (M). In what follows we present two different
descriptions of S (M)∗, which give rise to two different descriptions of algebras
with Gorenstein duality.
6.1.5. Formal series of symmetric forms on M . Let T [M ] be the space of formal
series

B = B0 +B1 + · · ·+Bk + · · · ,
where the kth term Bk is a k-multilinear symmetric k-form on M . We show
that (S (M))∗ can be identified with T [M ].

As a k-linear space, S (M) is spanned by the monomials y1 · · · yk, where
y1, . . . , yk are all possible unordered k-tuples of elements of a basis of M . We
define a pairing of T [M ] and S (M).

Definition 6.1.15. The pairing of a series B ∈ T [M ], where B = B0 +B1 + · · ·+
Bk + · · · , and a monomial y1 · · · yk is the value Bk(y1, . . . , yk) of the k-form Bk on
the k-tuple (y1, . . . , yk). It extends to the whole of S (M) by linearity.

The following result is straightforward.

Lemma 6.1.16. The above pairing of T [M ] and S (M) defines an isomorphism
between T [M ] and the dual space of S (M). Each linear function on S (M) that
vanishes on all components S (M)k of order k > n is given by a pairing with a finite
sum of symmetric forms B = B0 + · · ·+Bn .
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We describe the algebra S (M)L (B) constructed from a function L (B) which
corresponds to a series B = B0 + · · · + Bk + · · · whose terms Bk are symmetric
k-forms on M . By definition, the ideal IL (B) ⊂ S (M) constructed from L (B)
consists of the elements w ∈ S (M) such that the operator (w) vanishes at B (that
is, w ∈ IL (B) if and only if all terms of the formal series ρ(w)(B) vanish identically).

Theorem 6.1.17. The algebra S (M)L (B) is the quotient algebra of S (M) with
respect to the ideal IL (B) of elements w such that the series ρ(w)(B) is identically
zero.

The kth power mk of the maximal ideal m ⊂ S (M)L (B) is zero if and only if B
is a finite sum, B = B0 + · · ·+Bk−1 .

For another description of (S (M))∗ we need some properties of polynomials
over an (infinite-dimensional) space M , which we discuss in the next subsection.

6.1.6. Polynomials on infinite-dimensional spaces. Here we recall the definition of
the ring of polynomials k[M ] over an (infinite-dimensional) k-linear space M . This
ring is an algebraic generalization of polynomial rings over finite-dimensional spaces.
Unless specified otherwise, k will be the field of complex numbers C, the field of
real numbers R, or the field of rationals Q.

An infinite-dimensional space M is often endowed with some topology, and con-
siderations are limited to continuous polynomials in this topology. The algebraic
definition needed here corresponds to the weakest reasonable topology. A subset
ofM is open in this topology if its intersection with each finite-dimensional subspace
is open (in the topology of the subspace).

In § 6.1.7 we recall that this weak topology on M is sufficient to apply the
usual apparatus of differential calculus to polynomials P ∈ k[M ]. We shall use
this apparatus to interpret S (M) as the algebra of differential operators on the
polynomial ring.

Definition 6.1.18. A function F : M → k is called
– a polynomial of degree ⩽ k if its restriction to each finite-dimensional subspace

is a polynomial of degree ⩽ k;
– a homogeneous polynomial of degree k if its restriction to each finite-dimensional

subspace is a homogeneous polynomial of degree k (the function identically equal
to zero is a homogeneous polynomial of degree k for each k);

– a polynomial if for some k it is a polynomial of degree at most k.

The polynomials on M form a ring k[M ] with respect to the natural operations
of addition and multiplication. The polynomials of degree ⩽ k and homogeneous
polynomials of degree k form k-linear spaces.

The usual apparatus of differential calculus can be applied to polynomials P ∈
k[M ].

Definition 6.1.19. The Gâteaux derivative F ′v(x) of a function F at a point
x ∈M in the direction of v ∈M is

F ′v(x) = lim
t→0

F (x+ tv)− F (x)
t

whenever this limit exists.
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We now formulate the properties of polynomials that will be needed.
Each polynomial has a Gâteaux derivative at each point x and in each direction v.

(To prove this it suffices to use the differentiability properties of the restriction of
the polynomial to the plane L spanned by x and v.)

If F is a polynomial of degree ⩽ k (or a homogeneous polynomial of degree k),
then, as a function of x, the derivative F ′v(x) is a polynomial of degree ⩽ k − 1
(a homogeneous polynomial of degree k − 1, respectively).

For each point x the derivative F ′v(x) depends on the direction v in a linear way.
The linear function DxF defined by

DxF (v) = F ′v(x),

is called the differential of F at x.
Let v1 and v2 be two vectors. At each point x the second derivative F (2)

v1,v2(x) is
a symmetric bilinear form of v1 and v2. The second differential D2

xF of F at x
is the quadratic form corresponding to the bilinear form F

(2)
v1,v2(x), that is,

D2
xF (u) = F (2)

u,u(x).

Before we proceed to higher-order differentials, we recall the definition of the
polarization of a homogeneous polynomial.

Definition 6.1.20. A symmetric k-form B is called a polarization of a homoge-
neous polynomial P of degree k if P (u) = B(u, . . . , u) for each vector u.

Let v1, . . . , vm be an m-tuple of vectors. At each point x the mth derivative
F

(m)
v1,...,vn(x) is a symmetric multilinear function of v1, . . . , vm.

Definition 6.1.21. The differential Dm
x F at x is a homogeneous polynomial of

degree m with polarization F (m)
v1,...,vn(x), that is, Dm

x F (u) = F
(m)
u,...,u(x).

Theorem 6.1.22 (Taylor’s formula for polynomials). For a polynomial F : M → k
of degree ⩽ k and a pair of points x, u ∈M ,

F (x+ u) = F (x) +DxF (u) +
1
2
D2

xF (u) + · · ·+ 1
k!
Dk

xF (u). (6.4)

Proof. Formula (6.4) reduces to Taylor’s classical formula for the restriction F
∣∣
L

of F to the plane L spanned by the vectors x and u. □

Corollary 6.1.23. A polynomial F : M → k of degree ⩽ k has a unique expan-
sion into a sum of homogeneous polynomials of degree ranging from 0 to k . This
expansion defines the structure of a graded ring on k[M ].

Proof. The existence of the expansion follows from Taylor’s formula for the poly-
nomial F at x = 0. Uniqueness is a consequence of the uniqueness of the Taylor
polynomial for the restrictions of F to one-dimensional subspaces. □

Corollary 6.1.24. A homogeneous polynomial F of degree k has a unique polar-
ization B . It is given by

B(v1, . . . , vk) =
1
k!
F (k)

v1,...,vk
. (6.5)



Newton polytopes and tropical geometry 147

Proof. By Taylor’s formula for the homogeneous polynomial F at 0, we have F (u) =
Dk

0F (u)/k!. The form F
(k)
v1,...,vk is a polarization of Dk

0F . Hence the k-form B
defined by (6.5) is a polarization of F . The fact that the polarization is unique can
be verified using induction on the degree of the homogeneous polynomial F . □

Formula (6.5) defines a canonical isomorphism between the space of symmetric
k-forms and the space k[M ]k of homogeneous polynomials of degree k. Another
version of formula (6.5) for the polarization of a homogeneous polynomial, which
involves finite differences instead of differentiations, can sometimes also be of use.

Lemma 6.1.25. For any point x ∈ M the polarization B of a homogeneous poly-
nomial F of degree k satisfies

B(v1, . . . , vk) =
1
k!

∑
0⩽j⩽k

(
(−1)k−j

∑
1⩽i1<···<ij⩽k

F (x+ vi1 + · · ·+ vij
)
)
. (6.6)

Example 6.1.26. For k = 2 formula (6.6) produces the following expression for
the symmetric bilinear form B in terms of the associated quadratic form F :

B(v1, v2) = F (x+ v1 + v2)− F (x+ v1)− F (x+ vv2) + F (x).

We sketch the proof of Lemma 6.1.25 for k = R. By Lagrange’s theorem (for
the restriction of F to the subspace spanned by vectors x, v1, . . . , vk), there exist
numbers 0 < ε1 < 1, . . . , 0 < εk < 1 such that

F (k)
v1,...,vk

(x+ε1v1+· · ·+εkvk) =
1
k!

∑
0⩽j⩽k

(
(−1)k−j

∑
1⩽i1<···<ij⩽k

F (x+vi1+· · ·+vij
)
)
.

Each kth partial derivative of a polynomial F of degree k is a constant, hence

F (k)
v1,...,vk

(x+ ε1v1 + · · ·+ εkvk) = F (k)
v1,...,vk

(0).

This yields the claim of Lemma 6.1.25 for k = R.

6.1.7. Formal series of polynomials and the algebra Diff(M). Let k{{M}} be the
space of formal series

P = P0 + P1 + · · ·+ Pk + · · · ,
where the kth term Pk is a homogeneous polynomial of degree k over M . We define
the commutative algebra Diff(M) of linear differential operators with constant coef-
ficients that act on k{{M}}.

Definition 6.1.27. The algebra Diff(M) is the operator algebra on the ring of
series k{{M}} that is generated by the operators of multiplication by constants
in k and the operators of differentiation along vectors v ∈M .

Now we define a representation D : S (M) → Diff(M) of S (M) in Diff(M).

Definition 6.1.28. 1) For w = λ ∈ S0(M) = k the series D(λ)(P ) is equal to λP .
2) For w = v ∈M = S1(M) the series D(v)P is equal to the derivative P ′v of P

along v.
The equalities in 1) and 2) produce a representation of D because the algebra

S (M) is generated by the components S 0(M) and S 1(M).
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It is easy to see that D establishes an algebra isomorphism between S (M)
and Diff(M). We define a pairing of the spaces k{{M}} and S (M).

Definition 6.1.29. The pairing of a series P ∈ k{{M}} and an element w ∈
S (M) is defined as the free term of the series D(w)P .

The following assertion is easy to verify.

Lemma 6.1.30. The pairing of k{{M}} and S (M) determines an isomorphism
between k{{M}} and the dual space of S (M). Each linear function on S (M)
that vanishes on all the components S (M)k of order k greater than n is given by
a pairing of polynomials of degree at most n.

Let Λ: T [M ] → k{{M}} denote the map taking a series B = B0 + B1 + · · · +
Bk + · · · to the series P = P0 + P1 + · · ·+ Pk + · · · such that Pk is a homogeneous
polynomial of order k given as the restriction of the k-form Bk to the diagonal,
divided by k!, that is,

Pk(x) =
1
k!
Bk(x, . . . , x). (6.7)

Lemma 6.1.31. The two series B ∈ T [M ] and ΛB ∈ k{{M}} produce the same
linear function on S (M) when S (M)∗ is identified with T [M ] and k{{M}}.

Proof. By Corollary 6.1.24, the value of the linear function corresponding to the
k-form Bk at a homogeneous element w = v1 · · · vk ∈ S k(M) is equal to the value
of the linear function corresponding to the polynomial Pk = ΛBk at the same
element. This equality extends to all elements of T [M ] by linearity. □

Now we describe the algebra S (M)L (P ) constructed for the function L (P )
corresponding to a series P = P0 +P1 + · · ·+Pk + · · · . We start by describing the
ideal IL (P ) ⊂ S (M) constructed from L (P ).

Lemma 6.1.32. The ideal IL (P ) consists of those w ∈ S (M) for which the oper-
ator D(w) vanishes at P (that is, w ∈ IL (P ) if and only if all the terms in the
formal series ρ(w)(P ) vanish identically).

Theorem 6.1.33. The algebra S (M)L (P ) is the quotient algebra of S (M) with
respect to the ideal IL (P ) of elements w such that the series ρ(w)(P ) vanishes
identically.

The kth power mk of the maximal ideal m ∈ S (M)L (P ) is zero if and only
if P = P0 + · · ·+ Pk is a polynomial.

6.2. Homology of smooth toric varieties and rings of intersections.

6.2.1. Projective toric varieties. Projective toric varieties have a simple explicit
description. The fan W of such a variety is dual to some n-dimensional lattice
polytope ∆, that is, W = ∆⊥. The equality W = ∆⊥ does not define ∆ uniquely.
There are plenty of polytopes with the same dual fan.

With each polytope ∆ such that W = ∆⊥ we can associate a map of the vari-
ety MW to a projective space defined as follows. Suppose that ∆ contains N lattice
points, N = #(∆ ∩ Zn). Consider the projective space CPN−1 with coordinates
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x1 : · · · : xN . We number the characters χ1, . . . , χN corresponding to lattice points
in ∆ in an arbitrary order. The Kodaira map K∆ : (C∗)n → CPN−1 is defined by

K∆(x) = χ1(x) : · · · : χN (x). (6.8)

It has a regular extension to MW and defines the required map of MW into CPN−1.
This map K∆ is not an embedding, in general.

For sufficiently large polytopes the map K∆ : MW → CPN−1 is an embedding.
We say that a polytope ∆ is sufficiently large if condition A below holds for each
vertex A of the polytope. Let ∆−A denote the parallel translation of ∆ by the vec-
tor −A, and let Λ(∆, A) ⊂ Zn be the semigroup of all lattice points in the minimal
real cone containing ∆−A.

Condition A. The semigroup Λ(∆, A) is generated by the points of intersection
of ∆−A with the lattice Zn .

Each lattice polytope ∆ multiplied by a sufficiently large integer is a sufficiently
large polytope (this integer can be taken equal to n+ 1).

For sufficiently large polytopes ∆ the map

K∆ : MW → CPN−1

is an embedding. Moreover, the image of K∆(MW ) is equal to the closure of the
image of (C∗)n under the map (6.8). Using K∆, we define an action ρ of the group
(C∗)n on the projective space as

ρ(x) : (u1 : · · · : uN ) 7→ (χ1(x)u1 : · · · : χN (x)uN ).

The closure of the image K∆((C∗)n) of the torus under the Kodaira map, endowed
with the torus action ρ, is a projective toric variety M∆⊥ isomorphic to the original
variety M∆⊥ .

The restriction of ρ to the real torus Tn ⊂ (C∗)n preserves the standard Kähler
metric in the projective space. This action is connected with the moment map
Υ: CPN−1 → Rn, which is defined up to adding a constant vector a ∈ Rn. (The
moment map takes its values in the Lie coalgebra of the group Tn, which has
a natural identification with the character space Rn.)

The restriction of Υ to M∆⊥ ⊂ CPN−1 is of special interest. For a suitable
choice of the additive constant a ∈ Rn it takes M∆⊥ onto the polytope ∆. Then
the orbit OΓ corresponding to the dual cone σΓ ∈ ∆⊥ of a face Γ ⊂ ∆ is taken to the
interior Γ◦ of Γ (in the topology of the affine space spanned by Γ). In addition, Υ
defines a locally trivial fibration of the orbit OΓ over Γ◦, with the real torus T k,
where k = dimC OΓ, being the fibre.

6.2.2. Linear function on a simple polytope. Recall that a polytope ∆ ⊂ Rn is said
to be simple if each of its vertices is incident to precisely n facets. For each vertex A
of such a polytope there exists an affine transformation taking A to the origin
and a neighbourhood of A on ∆ to a neighbourhood of the origin in the positive
octant Rn

⩾0.
We say that a linear function ξ : Rn → R is generic if it is not constant on any

edge of ∆. The index of a generic linear function ξ at a vertex A ∈ ∆ is the number
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of edges going out of A such that ξ is decreasing along each edge. We say that a face
Γ ⊂ ∆ of dimension i is ξ-distinguished if it contains a vertex A with index i and
the i edges issuing from A along which ξ is decreasing. The restriction of ξ to Γ
takes its maximum value at A.

The following objects are connected with the polytope ∆:
– the f -vector (f0, f1, . . . , fn) whose component fi = fi(∆) is the number of

i-faces of ∆ for each i = 0, 1, . . . , n (we set fn to be equal to 1);
– the F -polynomial F (t) = f0 + f1t+ · · ·+ fnt

n;
– the H-polynomial defined by H(t) = F (t− 1);
– the h-vector (h0, h1, . . . , hn) whose components hi = hi(∆), i = 0, 1, . . . , n, are

the coefficients of the H-polynomial, that is, H(t) = h0 + h1t+ · · ·+ hnt
n.

Lemma 6.2.1. For each generic linear function ξ on a simple polytope ∆ the num-
ber hi(ξ) of vertices with index i is equal to hi(∆). The number of ξ-distinguished
i-faces in ∆ is also equal to hi(∆).

Proof. Consider the map φ from the set of faces of ∆ to its vertex set that assigns
to a face Γ the vertex A ∈ Γ at which the restriction of ξ to Γ takes its maximum
value. If A ∈ ∆ has index i with respect to ξ, then φ−1(A) contains

(
i
k

)
k-faces for

each k = 0, 1, . . . , n. Hence

fk =
∑

i

(
i

k

)
hi(ξ).

Taken together, these equalities mean that hk(ξ) = hk(∆). The map φ defines
a one-to-one correspondence between the ξ-distinguished i-dimensional faces and
the vertices with index i. □

Corollary 6.2.2 (Dehn–Sommerville theorem). For a simple n-dimensional poly-
tope ∆, its h-vector has the following properties:

1) hi(∆) = hn−i(∆) for 0 ⩽ i ⩽ n;
2) hi(∆) ⩾ 1 for 0 ⩽ i ⩽ n;
3) h0(∆) = hn(∆) = 1. (This is equivalent to the fact that the Euler character-

istic
∑

0⩽i⩽n

(−1)ifi(∆) of the simple polytope ∆ is equal to 1.)

Proof. 1) If a vertex A ∈ ∆ has index i with respect to a generic linear function ξ,
then it has index n−i with respect to−ξ. Hence hi(ξ) = hn−i(−ξ). Now property 1)
follows from Lemma 6.2.1.

2) For each 0 ⩽ i ⩽ n and each vertex A we can find a generic linear function ξ
such that A has index i with respect to ξ. Therefore, hi(ξ) ⩾ 1.

3) Each generic linear function ξ attains its maximum value at a unique vertex
of ∆, so hn(ξ) = 1. The function ξ attains its minimum at a unique vertex of ∆,
so h0(ξ) = 1. By Lemma 6.2.1, this means that h0(∆) = hn(∆) = 1. By definition,
the value of H at 0 is h0(∆). Since F (−1) = H(0), it follows that∑

0⩽i⩽n

(−1)ifi(∆) = h0(∆) = 1. □

In the next subsection we explain that, for any given integrally simple poly-
tope ∆, there is an associated smooth projective variety with odd Betti numbers
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equal to zero and even Betti numbers b2i equal to hi. For these polytopes the equal-
ity hi = hn−i follows from Poincaré duality for the corresponding toric variety. On
a smooth manifold Poincaré duality can be established by means of its represen-
tations as two CW-complexes, one of which is constructed by using an arbitrary
Morse function f and the other one by using −f . The definition of the index of
a vertex of a simple polytope with respect to a generic linear function and the proof
of the Dehn–Sommerville theorem presented above have been motivated by Morse
theory and the proof of Poincaré duality by means of this theory. Developing this
idea made it possible to obtain new results on the combinatorics of polytopes, which
have led to a solution of the old problem concerning groups generated by reflections
in multidimensional Lobachevskii spaces [37].

6.2.3. The homotopy type of a smooth projective toric variety. A toric variety MW

is smooth and projective if and only if its fan W is convex and non-degenerate,
that is, it has the form ∆⊥, where ∆ is an integrally simple polytope (see Defini-
tion 2.3.10). In what follows we consider varietiesMW of this kind. Fix an integrally
simple polytope ∆ such that W = ∆⊥. Below, in discussing MW we mention the
polytope ∆ and its faces repeatedly. The map K∆ embeds MW into a projective
space. The composition ξ ◦ Υ of the moment map and a generic linear function
is a Morse function on M∆⊥ = K∆(MW ). Its critical points are zero-dimensional
orbits on M∆⊥ . Furthermore, the Morse index of ξ ◦Υ at a zero-dimensional orbit
B ∈ M∆⊥ is 2i, where i is the index of the vertex A = Υ(B) ∈ ∆ for the linear
function ξ.

Theorem 6.2.3. The variety MW , where W = ∆⊥ and ∆ is an integrally simple
polytope, has the homotopy type of a CW -complex with only even-dimensional cells
such that the number of 2i-dimensional cells is hi(∆). The groups H2i(MW ,Z) are
torsion free and the Betti numbers b2i(MW ) are equal to hi(∆).

Proof. It is sufficient to consider ξ ◦ Υ as a Morse function on MW and use the
above geometric description of its critical points and their indices. □

Corresponding to each i-dimensional face Γk of ∆ there is an i-dimensional
complex cycle T (Γk) in MW such that dimR T (Γk) = 2i. Linear combinations
of the T (Γk) generate the whole group H2i(MW ,Z). Morse theory also provides
natural bases in the homology groups.

Theorem 6.2.4. For W = ∆⊥ the group H2i(MW ,Z) is generated by the i-
dimensional toric subvarieties T (Γk) of MW that are the closures of the orbits OΓk

of dimension dimC OΓk
= i corresponding to ξ-distinguished faces Γk of ∆ with

dimR Γk = i.

Theorem 6.2.4 has a stronger version, which also has a simpler proof.

Definition 6.2.5. A smooth compact complex algebraic variety has the structure
of an algebraic CW-complex if it can be represented as a union of disjoint cells of the
following form. Each cell is an algebraic variety isomorphic to an affine space Ci,
whose dimension depends on the cell. The closure of each cell is a union of this cell
with some lower-dimensional ones.

All smooth compact manifolds have the homotopy type of a finite CW-complex.
However, it is only in some exceptional cases that a compact algebraic variety has



152 B.Ya. Kazarnovskii, A.G. Khovanskii, and A. I. Esterov

the structure of an algebraic CW-complex. For example, the projective line CP1

is the only connected algebraic curve with this structure.
The Chow ring of an algebraic CW-complex is isomorphic (upon a change of grad-

ing) to its cohomology ring. For general algebraic varieties this is far from true. For
example, the zeroth Chow group of a connected algebraic curve of genus g contains
the Jacobian variety of this curve, which is a complex Abelian g-dimensional torus.

Theorem 6.2.6. Let ξ be a generic linear function on an integrally simple poly-
tope ∆. Then the variety MW , where W = ∆⊥ , has the structure of an algebraic
CW -complex whose cells are in a bijective correspondence with the vertices of ∆.
Furthermore, the 2i-dimensional cells correspond to the vertices A with index i with
respect to ξ . These cells consist of the orbits corresponding to the faces Γ of ∆ such
that the restriction of ξ to Γ attains its maximum value at A.

Proof. Let τ ∈ (Rn)∗ be the vector in the Lie algebra of the group (C∗)n that
determines −ξ, so that −ξ(x) = ⟨τ, x⟩. We can assume without loss of generality
that τ is an integer vector which corresponds to an algebraic one-parameter group.
The action of this group on the toric variety is similar to the action of the gradient
flow of −ξ, but it is much easier to describe (one does not need the Kähler metric
or the moment map). Let us show that the variety is partitioned by the action of
the one-parameter group into cells whose points tend to zero-dimensional orbits,
which are different for different cells. Furthermore, the cell whose points tend to
the zero-dimensional orbit corresponding to a vertex A is the union of the orbits
described in the theorem.

Indeed, let Aj ∈ ∆ be the lattice point closest to A on the jth edge incident
to A. Consider the affine toric subvariety containing the zero-dimensional orbit
corresponding to A ∈ ∆. This subvariety is equivariantly isomorphic to the stan-
dard space Cn endowed with the induced action of the torus (C∗)n. The character
corresponding to the lattice point Aj−A is the jth coordinate function on Cn. The
one-parameter group defines a linear diagonal action on Cn. It multiplies the jth
coordinate by tkj , where t is the group parameter and kj = ⟨τ,Aj −A⟩.

Hence kj is positive if and only if −ξ is increasing along the jth edge of the
polytope as one moves away from A, and therefore ξ is decreasing. The points
tending to the origin under the action of the one-parameter group are precisely
those that lie in the coordinate subspace such that for all the coordinates in this
subspace the corresponding numbers hj are positive. □

Lemma 6.2.1 and the Dehn–Sommerville theorem extend immediately to simpli-
cial fans not necessarily dual to simple convex polytopes.

In exactly the same way, using the action of a sufficiently generic one-parameter
group, we can show that the Grassmannians G(n, k) of k-dimensional subspaces
of Cn and some other varieties of this type have the structure of an algebraic
CW-complex. In the same way we can show that smooth compact non-projective
toric varieties have the structure of an algebraic CW-complex.

6.2.4. Cycles corresponding polytope faces. Instead of selecting basis cycles among
the cycles T (Γk) such that dimR Γk = i, we can describe all relations between
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the T (Γk). These are consequences of the construction described in what follows,
which will also be needed later on.

We say that a lattice polytope ∆ is subordinate to a fan W if its support func-
tion H∆ is linear on each cone |σ| of W . Suppose that the Newton polytope ∆(P ) of
a Laurent series P is subordinate to the fan W of a smooth projective variety MW .
Consider the algebraic variety X ⊂ (C∗)n given by the equation P = 0. We can
regard the closure X of X in MW as a cycle in the group H2n−2(MW ,Z). For
different Laurent polynomials P with the same Newton polytope these cycles are
homologous. Moreover, the following result holds.

Theorem 6.2.7. The cycle X is homologous to the cycle
∑

ki(∆(P ))T (Γi), where
the Γi are the facets and ki = −H∆(P )(ξi). (Here ξi is the irreducible integer vector
on the dual ray σΓi

⊂W of Γi .)

Proof. We can regard the Laurent polynomial P as a rational function on MW . On
each divisor T (Γi) the function P has order ki(∆) = −H∆(P )(ξi). By definition,
the principal divisor of P on the torus (C∗)n is X, so the principal divisor of P
on MW is X −

∑
ki(∆)T (Γi), which yields the theorem. □

Corollary 6.2.8. For each character χ of (C∗)n ,∑
⟨ξi, χ⟩T (Γi) = 0. (6.9)

Proof. This follows from Theorem 6.2.7 for P = χ. □

Each face Γ of ∆ is, in turn, an integrally simple polytope ∆̃ of dimension
k = dimR Γ. The polytope ∆̃ = Γ is associated with the smooth toric variety M(∆̃)
of complex dimension k. Each (k − 1)-face of Γ̃i corresponds to an invariant cycle
T̃ (Γ̃i) ⊂M(∆̃) in ∆̃. The cycles T̃ (Γ̃i) in M(∆̃) are connected by relations similar
to the relations (6.9) for the cycles T (Γi) in MW . The faces Γ̃i of ∆̃ = Γ are also
faces of the original polytope ∆. The corresponding cycles T̃ (Γ̃i) in MZ and T (Γ̃i)
in MW are isomorphic and connected by the same relations.

Now we consider this in more detail.
A face Γ ⊂ ∆ with dim Γ = k corresponds to a linear k-dimensional space

LΓ ⊂ Rn parallel to the affine subspace spanned by Γ. The subspace LΓ contains
the integer lattice LΓ ∩Zn of rank k. We can view LΓ as the character space of the
quotient torus (C∗)dim Γ of the original torus (C∗)n with respect to the connected
subtorus whose Lie algebra is the complexification of the minimal subspace of (Rn)∗

containing the cone σΓ.
We can move Γ = ∆̃ to LΓ by parallel translation. The polytope ∆̃ = Γ ⊂ LΓ

corresponds to a smooth projective toric variety MZ with fan Z equal to Γ⊥ ⊂ L∗Γ.
Each (k − 1)-dimensional face of Γ̃i in Γ corresponds to an irreducible integer
covector ξ̃i in the ray of Z dual to Γ̃i. The space L∗Γ is the quotient of (Rn)∗ with
respect to the minimal linear subspace L⊥Γ ⊂ (Rn)∗ containing the cone σ(Γ). Let π
denote the map from (Rn)∗ to L∗Γ. Let ξ ∈ (Zn)∗ be an arbitrary covector such
that π(ξ) = ξ̃.
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Corollary 6.2.9. For each character χ of the torus (C∗)dim Γ , the following rela-
tion holds between the invariant (k − 1)-dimensional cycles T (Γ̃i) corresponding to
the (k − 1)-dimensional faces Γ̃i ⊂ Γ:∑

⟨ξi, χ⟩T (Γ̃i) = 0.

Each vertex A ∈ Γ corresponds to a zero-dimensional orbit OA ∈ MW and k
invariant (k − 1)-dimensional cycles T (Γ̃i) ⊂ T (Γ) containing OA.

Corollary 6.2.10. Invariant (k−1)-dimensional cycles containing OA are integer
linear combinations of invariant (k − 1)-dimensional cycles in MΓ⊥ not contain-
ing OA .

Proof. To simplify the notation we carry out the proof for Γ = ∆ and k = n.
Since ∆ is a simple polytope, there exist vectors ξ1, . . . , ξn ∈ (Zn)∗ generating the
group (Zn)∗ and spanning the one-dimensional cones in W dual to the facets of ∆
containing A. Now it is sufficient to use equality (6.9) for the characters χ1, . . . , χn

such that ⟨ξi, χj⟩ = δj
i . □

Theorem 6.2.11. The group H2i(M∆⊥ ,Z) is isomorphic to the quotient group
of linear combinations of i-dimensional toric subvarieties T (Γi) of M∆⊥ that are
the closures of i-dimensional orbits OΓi

with respect to the subgroup of relations in
Corollary 6.2.9.

Proof. Fix a linear function ξ : Rn → R which is generic relative to ∆. By the
height of a face Γ we mean the maximum of the restriction of ξ to Γ. Assume that
an i-dimensional face Γk is not ξ-distinguished. Then the cycle T (Γk) is a linear
combination of the cycles corresponding to faces with height less than that of Γ.
Indeed, suppose that the restriction of ξ to Γ attains it maximum at a vertex A.
Since the face Γ is not ξ-distinguished, there exists an edge l going out of A and not
lying in Γ such that ξ is decreasing along l. Consider the (k+1)-dimensional face Ψ
of ∆ that contains Γ and l. We apply Corollary 6.2.10 to Ψ. By this corollary, T (Γi)
is a linear combination of cycles corresponding to i-dimensional faces of Ψ and not
containing A. All these faces have height less than that of Γ. □

6.2.5. The ring of intersections and faces of ∆. LetM be a smooth compact real ori-
ented n-dimensional manifold. Poncaré duality establishes an isomorphism between
the homology and cohomology groups of M , namely Hk(M,Z) and Hn−k(M,Z) for
0 ⩽ k ⩽ n.

Modulo torsion, the cup product in the cohomology ring has a clear geometric
meaning when transferred to homology using Poincaré duality. Let us consider this
in more detail, restricting generality to what is needed.

The manifolds M that we need (smooth compact toric varieties) are torsion-free,
and the ring of intersections for such manifolds is defined inH∗(M,Z). Furthermore,
in these manifolds any class in each homology group Hm(M,Z) has a representation
of the form Γ =

∑
kiγi, where the γi are oriented m-dimensional manifolds with

singularities of codimension 2. More precisely, each γi is a compact stratified set
with a finite number of smooth strata of differing dimensions adjoining one another
well enough. Moreover, the strata of highest dimension m are oriented, while the
other strata have codimension at least 2.
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With the exception of this subsection, throughout the paper we consider only
cycles of the form Γ =

∑
kiγi, where the γi are algebraic subvarieties. All homol-

ogy classes in toric varieties have such representations. For this reason, the ring of
intersections of a toric variety can be described in purely algebraic terms (and the
corresponding object is called the Chow ring of the toric variety; see § 4.1.5) and is
meaningful not only for complex toric varieties, but also for varieties over an arbi-
trary algebraically closed field. On the other hand, for complex toric varieties the
intersections of real cycles (and not only of complex algebraic ones) are governed
by the ring of intersections of the variety.

To intersect two cycles Γ1 and Γ2 we must first replace them by homologous
cycles Γ′1 =

∑
kiγi and Γ′2 =

∑
mjδj such that for all i and j the strata of the

components γi and δj are transversal to one another.
Then, we can define the intersection of the homology classes of Γ1 and Γ2 to be

the homology class of the cycle
∑

kimjγi∩δj , where γi∩δj is treated as a manifold
with singularities endowed with the induced orientation.

We can show that the intersection of homology classes is well defined. (It is
independent of the choice of transversal cycles homological to the original ones.)
Moreover, the intersection in homology is Poincaré dual to the cup product in the
cohomology ring.

Here are some facts on intersection theory in the homology on n-dimensional
oriented manifolds with singularities. (We do not use these facts in what follows.)
Assume that the manifold with singularities is compact and has a finite stratification
with smooth strata of different dimensions adjoining one another well enough. In
addition, the strata of highest dimension n are oriented and the other strata have
codimension at least 2.

For such singular manifolds Goresky and MacPherson have introduced an entire
spectrum of homology groups of various types. The cycles in these homology groups
lie mainly in non-singular n-dimensional strata of the manifold. The intersections of
a cycle with other strata have positive codimension in this cycle. The types of these
homology groups differ depending on how large these codimensions can actually be.
(The codimensions of intersections of chains are subject to the same restrictions as
the codimensions of intersections of cycles.) In certain precisely described cases the
intersection of cycles from homology groups of two (generally speaking, different)
types is well defined and belongs to a homology group of some third type.

One homology type, which we call exceptional, admits cycles such that their inter-
section with each singular stratum is a set whose codimension in the cycle is no less
than the codimension of the stratum. The intersection of two cycles of exceptional
type is a well-defined operation, whose result remains in the class of cycles of excep-
tional type. Thus, a homology group of exceptional type is a ring with respect to
the operation of intersection. The cohomology ring of a manifold with singularities
is Poincaré dual to this ring of intersections.

Another homology type, which we call standard , admits cycles such that their
intersection with each singular stratum is a set whose codimension in the cycle is
at least two. The intersection of a cycle of standard type with a cycle of excep-
tional type is well defined and is a cycle of standard type. A homology group of
standard type is isomorphic to the homology group of the singular manifold. The
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operation of intersection of cycles of standard type and cycles of exceptional type
is Poincaré dual to the cap product of homology and cohomology classes of the
singular manifold.

Although the definitions of various types of homology groups involve a stratifi-
cation of the singular manifold, the homology groups do not depend on the choice
of this stratification and are invariants of the manifold. Thus, the operation of
intersecting cycles provides a geometric interpretation of the cup product in the
cohomology ring and the cap product in homology and cohomology groups.

We return to toric varieties.
For a smooth toric variety MW whose fan is dual to an integrally simple poly-

tope ∆, that is, W = ∆⊥, the ring of intersections can be fully described in terms
of ∆. Here we give an outline of such a description.

To each i-dimensional face Γk of ∆ there corresponds a smooth algebraic subvari-
ety T (Γk) ⊂MW of complex dimension i. Integer linear combinations of the cycles
T (Γi) generate the group H2i(MW ,Z). This correspondence between the faces of
the polytope and the cycles preserves the transversality property of intersections.
(Here we say that two faces Γi,Γj ⊂ ∆ intersect transversally if they either have an
empty intersection or the face Γ = Γi∩Γj has dimension dim ∆−dim Γi−dim Γj .)

Theorem 6.2.12. If Γi and Γj are disjoint faces, then the cycles T (Γi) and T (Γj)
are also disjoint. On the other hand, if the faces intersect transversally and Γ =
Γi ∩ Γj , then the cycles T (Γi) and T (Γj) also intersect transversally and their
intersection is T (Γ).

Proof. The cycles T (Γi) and T (Γj) are the unions of orbits corresponding to all the
faces lying in Γi and Γj , respectively. Hence if Γi∩Γj = ∅, then T (Γi)∩T (Γj) = ∅.

Suppose that Γi and Γj intersect transversally and Γi∩Γj = Γ ̸= ∅. Then in the
set of orbits lying in the intersection of T (Γi) and T (Γj) there is a unique orbit of
maximum dimension. It corresponds to an open orbit in the affine toric variety Mσ,
where σ is the closure of the open cone dual to the face Γ. The intersections
of Mσ with T (Γi), T (Γj), and T (Γ) are Zariski open subsets of these cycles. The
variety Mσ is isomorphic to the affine space Cn minus all the coordinate subspaces
not containing the open orbit in Mσ. The intersections of Mσ with T (Γi) and T (Γj)
correspond to coordinate subspaces intersecting transversally in this orbit. □

Theorem 6.2.13. If faces {Γi} (of differing dimensions, in general) intersect
transversally, then the corresponding cycles {T (Γi)} also intersect transversally.
In addition, the face

⋂
Γi corresponds to the cycle

⋂
{T (Γi)}.

We saw in the previous subsection that there are many relations between cycles
of the form T (Γi). It is easy to verify that these relations suffice to make the cycles
transversal. In combination with Theorem 6.2.13, such constructions provide an
explicit description of the ring of intersections.

Suppose that faces Γ1,Γ2 ⊂ ∆ of dimensionsm and k intersect non-transversally,
the intersection being a face Γ of dimension l, so that k+m− l < n. Now we show
how to replace the k-dimensional face Γ2 by a linear combination of k-dimensional
faces Ti such that, for each Ti, either dimTi ∩ Γ2 = ∅ or dimTi ∩ Γ1 < l. Then
we must also replace the faces Ti that intersect Γ1 non-transversally by linear
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combinations of faces whose intersections with Γ1 have a still lower dimension, and
so on.

Let ξ be a generic linear function on ∆. Let A ∈ ∆ be the vertex of Γ at which ξ
takes it maximum value on this face. In the set of edges outgoing from A, there
are m edges in Γ1, k edges in Γ2, and l edges in Γ (the latter also lie in both Γ1

and Γ2). Since n > m + k − l, there exists an edge E incident to A that lies
neither in Γ1 nor in Γ2. Let Γ3 be the unique (k + 1)-dimensional face in ∆ that
contains Γ2 and E. By construction, Γ2 ⊂ Γ3 and Γ1∩Γ3 = Γ. By Corollary 6.2.10,
the cycle corresponding to Γ2 can be represented as a linear combination of cycles
corresponding to all the k-dimensional faces Ti of the polytope Γ3 of dimension
k + 1, with the exception of faces containing A. For each such Ti the intersection
Ti ∩ Γ1 is either empty or a proper face of Γ, and therefore dimTi ∩ Γ1 < l.
6.2.6. The ring of intersections of MW and W -cycles in (C∗)n. In this subsection
we describe the ring of intersections of MW using algebraic cycles in (C∗)n and
information about their closures in MW . We assume that the fan W in (Rn)∗ is
dual to an integrally simple polytope ∆ ⊂ Rn.

Definition 6.2.14. An algebraic variety X ⊂ (C∗)n all of whose irreducible com-
ponents have dimension k is called a W -variety if its closure X in MW is disjoint
from the orbits O ⊂MW such that dimC O < n− k.

Lemma 6.2.15. The closure of a k-dimensional W -variety X and an (n − k)-
dimensional orbit O are either disjoint or intersect in a finite set.

Proof. If the set O ∩X is infinite, then it is non-compact because the affine vari-
ety O cannot contain a compact algebraic variety of positive dimension. Hence X
intersects some of the orbits of dimension < n − k adjacent to O, which is impos-
sible. □

The following result has a similar proof.

Lemma 6.2.16. The closure of a k-dimensional W -variety X intersects every
orbit O in M∆⊥ in varieties of ‘regular’ dimension, that is, either X ∩ O = ∅
or dimX ∩O = (k +m)−n, where k = dimX and m = dimO .

A stratification of an algebraic variety X is a representation of X as the union
X =

⋃
Xi of disjoint smooth algebraic varieties Xi, which are called strata. We

say that two varieties X and Y intersect transversally if they have stratifications
X =

⋃
Xi and Y =

⋃
Yj in which any two strata intersect transversally.

Let X and Y be transversally intersecting subvarieties of an n-dimensional vari-
ety M .

Lemma 6.2.17. Assume that each irreducible component of X and Y has dimen-
sion k or m, respectively. If X ∩ Y ̸= ∅, then k + m ⩾ n and each irreducible
component of X ∩ Y has dimension k +m− n.

Proof. The codimension of the intersection of two smooth subvarieties is the sum of
their codimensions. We must show that X∩Y is the closure of the variety Xk∩Ym,
where Xk is the union of all k-dimensional strata in X and Ym is the union of all
m-dimensional strata in Y . Indeed, at each point a ∈ X ∩Y the germ of X ∩Y has
dimension ⩾ k +m− n. Hence each neighbourhood of a intersects Xk ∩ Ym. (The
other strata in X and Y have intersections of dimension ⩽ k +m− n.) □
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Theorem 6.2.18. For any W -varieties X and Y there exists a Zariski open set
U ⊂ (C∗)n such that for all g ∈ U the varieties X and gY intersect transversally
within the torus (C∗)n , and for each orbit O ⊂MW the varieties O∩X and O∩gY
intersect transversally within O .

Proof. Consider the following stratifications of X and Y . First, we represent X
and Y as X =

⋃
(O∩X) and Y =

⋃
(O∩Y ). For almost all g ∈ (C∗)n the cycles X

and gY intersect transversally within (C∗)n. By Lemma 6.2.16, the intersections
X ∩O and Y ∩O of the cycles X and Y in MW with any orbit O are subvarieties
of ‘regular’ dimension. For almost all g ∈ (C∗)n the cycles X ∩ O and g(Y ∩ O)
intersect transversally within O (this is a general result in the theory of rings
of conditions, which we have used above) and their intersection has dimension
lower than n − (k + m). Hence each irreducible component Z ⊂ X ∩ gY of the
intersection has dimension n−(k+m), and there exists a Zarisky open set U ⊂ (C∗)n

intersecting Z such that X ∩ U and Y ∩ U are smooth varieties which intersect
transversally, the intersection Z ∩ U being a smooth variety. Hence the cycles
X ∩ gY and X ∩ Y have the same images in the ring of intersections of MW . □

Corollary 6.2.19. For X , Y , and g as in Theorem 6.2.18,

X ∩ gY = X ∩ gY .

An integer linear combination of k-dimensional W -varieties is called a k-
dimensional W -cycle. The following result is easy to verify.

Lemma 6.2.20. Lemma 6.2.17 and Theorem 6.2.18 hold not only for W -varieties
but also for W -cycles.

6.2.7. The ring of intersections and Newton polytopes. Let P be a Laurent poly-
nomial with Newton polytope ∆1 that is subordinate to ∆ (this means that the
support function H∆1 is linear on each cone in the fan ∆⊥), and let X ⊂ (C∗)n be
given by the equation P = 0. The closure X(∆1) of X in M∆⊥ can be regarded as
a cycle in H2n−2(∆⊥,Z). By Theorem 6.2.7, we have X =

∑
ki(∆)T (Γi), where

the Γi are (n − 1)-dimensional faces of ∆, ki = H∆(ξi), and ξi is an irreducible
integer vector in the dual ray σΓi

⊂ ∆⊥ of Γi.
With each system of lattice polytopes ∆1, . . . ,∆n−k subordinate to ∆ we asso-

ciate a variety X defined by sufficiently general systems of equations P1 = · · · =
Pn−k = 0 with Newton polytopes ∆1, . . . ,∆n−k. We call X a non-degenerate com-
plete intersection subordinate to ∆.

Corollary 6.2.21. The closure X in M∆⊥ of a non-degenerate complete intersec-
tion X subordinate to ∆ is a cycle in H2k(M∆⊥ ,Z) which is equal to the intersection
of the cycles X(∆1), . . . , X(∆n−k).

Theorem 6.2.22. The intersection number of n cycles X(∆1), . . . , X(∆n) is the
mixed volume of the polytopes ∆1, . . . ,∆n times n!.

Proof. This is the toric version of the Kushnirenko–Bernstein theorem. □

Theorem 6.2.23. Each cycle γ ∈ H2n−2(M∆⊥ ,Z) has a representation

γ = X1(∆1)−NX2(∆),

where N is a sufficiently large integer.
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Proof. Let γ = miT (Γi). We define a function Hγ on (Rn)∗ as follows: Hγ is linear
on each (simplicial) cone in the fan ∆⊥ and Hγ(ξi) = mi for irreducible integer
vectors ξi lying on the rays in the one-dimensional skeleton of ∆⊥ that are dual
to Γi. The function Hγ +NH∆ is convex for a sufficiently large integer N , so it is
the support function of a convex lattice polytope ∆1 subordinate to ∆. We have
γ +NX2(∆) = X1(∆1), which proves the theorem. □

Theorem 6.2.24. Each cycle in H2n−2k(M∆⊥ ,Z) can be represented as an integer
linear combination of the closures of non-degenerate (n− k)-dimensional complete
intersections subordinate to ∆.

Proof. Theorem 6.2.23 proves the required fact for (2n − 2)-dimensional homol-
ogy. In particular, it yields the representation for the cycles T (Γi) correspond-
ing to the facets Γi ⊂ ∆. Each face Γ of dimension n − m is the intersection
of m facets Γi1 , . . . ,Γim

. The corresponding cycle T (Γ) is the intersection of the
cycles T (Γi1), . . . , T (Γim

), and so it can also be represented as specified. Since
each cycle in H2n−2m(M∆⊥ ,Z) is a linear combination of cycles corresponding to
(n−m)-dimensional faces, this completes the proof. □

6.3. Rings of conditions and rings of intersections as algebras with Gore-
nstein duality. A smooth projective toric variety M∆⊥ is an oriented even-
dimensional real manifold homotopically equivalent to a cell complex containing
even-dimensional cells only. The cohomology ring H∗(M∆⊥ ,R) of such a manifold
possesses Gorenstein duality (see Example 6.1.4). Like any algebra with Gorenstein
duality, such a ring can be described in two slightly different ways. The cohomology
ring of M∆⊥ with integer coefficients has no torsion and can be recovered from the
algebra H∗(M,R). We describe the rings H∗(M∆⊥ ,R) and H∗(M∆⊥ ,Z) in § 6.3.1.

Recall that the ring of conditions Rn of the complex torus (C∗)n is an
infinite-dimensional graded commutative algebra whose mth component consists
of algebraic cycles of codimension m, that is, linear combinations of (n −m)-
dimensional algebraic subvarieties of (C∗)n defined up to numerical equivalence.

6.3.1. The rings of intersections of toric varieties. Let G∆ denote the Grothendieck
group of the semigroup of lattice polytopes subordinate to the fan ∆⊥ for a fixed
simple lattice polytope ∆ ⊂ Rn. Let L∆ denote the finite-dimensional R-linear
space spanned by the virtual polytopes in G∆, so that L∆ = G∆ ⊗Z R.

The space of R-linear combinations of k-tuples of polytopes from L∆ can be
identified in a natural way with the component Sk(L∆) of the symmetric algebra
of L∆.

It will be convenient to deal with the ring of intersections H∗(M∆⊥ ,R) dual to
the cohomology ring H∗(M∆⊥ ,R). We modify the grading on H∗(M∆⊥ ,R) by
ascribing grading k to the component Hn−2k(M∆⊥ ,R). Let H∗′(M∆⊥ ,R) denote
the homology ring H∗(M∆⊥ ,R) with the modified grading.

One description of H∗′(M∆⊥ ,R) as an algebra with Gorenstein duality is this.
Consider the n-form B on L∆ that assigns the mixed volume MV(∆1, . . . ,∆n)
times n! to an n-tuple of virtual polytopes ∆1, . . . ,∆n ∈ L∆. The form B corre-
sponds to a linear function L (B) on the symmetric algebra S (L∆) and to a homo-
geneous ideal IL (B) ⊂ S (L∆).
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In the ideal IL (B), its homogeneous component of degree k consists of linear com-
binations

∑
λi(∆i

1, . . . ,∆
i
k) of k-tuples (∆i

1, . . . ,∆
i
k) of virtual polytopes in L∆

such that for each polytope ∆̃ ∈ L∆ the linear combination∑
λin! MV(∆i

1, . . . ,∆
i
k,∆k+1, . . . ,∆n)

of mixed volumes of the polytopes (∆i
1, . . . ,∆

i
k,∆k+1, . . . ,∆n) with ∆k+1 = · · · =

∆n = ∆̃ is equal to zero.

Theorem 6.3.1. The ring H∗′(M∆⊥ ,R) is isomorphic to the quotient algebra

S (L∆)L (B) = S (L∆)/IL (B)

of the symmetric algebra S (L∆) of L∆ with respect to the ideal IL (B) .

Corollary 6.3.2. The ring H∗′(M∆⊥ ,Z) is isomorphic to the subring of
S (L∆)L (B) generated by the images of the subring Z and the subgroup G∆ of the
algebra S (L∆) under the factorization homomorphism.

Now we give another description (called the Pukhlikov–Khovanskii description)
of the ring H∗′(M∆⊥ ,R) as an algebra with Gorenstein duality. Consider a homo-
geneous polynomial P of degree n on L∆ that assigns to a virtual polytope in L∆

the volume of the polytope. The polynomial P corresponds to an ideal IL (P ) of the
algebra Diff(L∆) of linear differential operators with constant coefficients on L∆,
which is isomorphic to S (L∆). The ideal IL (P ) consists of all operators vanishing
at P .

Theorem 6.3.3. The ring H∗′(M∆⊥ ,R) is isomorphic to the quotient algebra

Diff(L∆)L (P ) = Diff(L∆)/IL (P )

of Diff(L∆).

Corollary 6.3.4. The ring H∗′(M∆⊥ ,Z) is isomorphic to the subring of
Diff(L∆)L (P ) generated by the images under the factorization homomorphism
of the operators of multiplication by integers and the operators of differentiation
along vectors in G∆ .

6.3.2. The ring of conditions of (C∗)n. Let G denote the Grothendieck group of
the semigroup of lattice polytopes in Rn. Let L be the finite-dimensional R-linear
space spanned by the virtual polytopes in G , that is, L = G ⊗Z R.

The space of R-linear combinations of k-tuples of polytopes from L can be
identified in a natural way with the component Sk of the symmetric algebra of L .

One description of the ring of conditions Rn is this. Consider the n-form B on L
that assigns their mixed volume MV(∆1, . . . ,∆n) times n! to an n-tuple of virtual
polytopes ∆1, . . . ,∆n ∈ L . The form B corresponds to a linear function L (B) on
the symmetric algebra S (L ) and a homogeneous ideal IL (B) ⊂ S (L ).

The homogeneous component of IL (B) of degree k consists of linear combinations∑
λi(∆i

1, . . . ,∆
i
k) of k-tuples (∆i

1, . . . ,∆
i
k) of virtual polytopes in L such that for

each polytope ∆̃ ∈ L the linear combination∑
λin! MV(∆i

1, . . . ,∆
i
k,∆k+1, . . . ,∆n)
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of the mixed volumes of the tuples (∆i
1, . . . ,∆

i
k,∆k+1, . . . ,∆n) with ∆k+1 = · · · =

∆n = ∆̃ is equal to zero.

Theorem 6.3.5. The ring Rn is isomorphic to the subring of S (L )/IL (B) gen-
erated by the images of the subring Z and the subgroup G of S (L ) under the
factorization homomorphism.

The other description of the ring of conditions Rn is as follows. Consider the
homogeneous polynomial P of degree n on L that assigns to a virtual polytope
in L the volume of this polytope. The polynomial P corresponds to the ideal IL (P )

in the algebra Diff(L ) of linear differential operators with constant coefficients
on L (which is isomorphic to S (L )). The ideal IL (P ) consists of the operators
vanishing at P .

Theorem 6.3.6. The ring Rn is isomorphic to the subring of Diff(L )/IL (P ) gen-
erated by the images under the factorization homomorphism of the operators of
multiplication by integers and the operators of differentiation along vectors in G .

7. The ring of conditions of Cn

7.1. Introduction. The algorithm for constructing the ring of conditions of a
homogeneous affine algebraic variety X terminates successfully if the ring of poly-
nomials on X has a ‘nice structure’ from the standpoint of group theory; see [11]
and [10]. It is usually assumed that 1) the acting group H is reductive, and 2) the
representation of H in the ring of polynomials on X contains no multiple irreducible
components. For example, when H = X = (C \ {0})n, conditions 1) and 2) are
obviously satisfied because in this case the ring of polynomials consists of linear
combinations of characters of the torus (C \ {0})n.

The ring of exponential sums consists of linear combinations of characters of the
additive group Cn

+ of Cn. Recall that an exponential sum is a function of the form

f(z) =
∑

λ∈Λ⊂(Cn)∗, cλ∈C

cλe⟨z,λ⟩

on Cn, where Λ is a finite subset of the dual space (Cn)∗ of Cn, called the support of
the exponential sum. An exponential sum with support in the subspace Re(Cn)∗ ⊂
(Cn)∗ is said to be quasi-algebraic. The convex hull of the support of an exponential
sum is called its Newton polytope.

We consider the ring of exponential sums as an analogue of the ring of Lau-
rent polynomials on the complex torus. Guided by this analogy, we construct the
ring of conditions of the corresponding intersection theory. More precisely, we con-
sider exponential analytic sets (EA-sets in what follows), which are the varieties
defined as the sets of common zeros of finite systems of exponential sums, and we
construct the ring of conditions of the intersection theory of EA-sets. With an
EA-set we associate an algebraic subvariety of a multidimensional complex torus,
which we call a model of this EA-set; see Definition 7.2.2. If we limit ourselves to
quasi-algebraic exponential sums, then the construction of the ring of conditions is
based entirely on applying the methods of tropical algebraic geometry to models
of EA-sets. For arbitrary exponential sums the geometry of EA-sets becomes more
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involved. In particular, in the general case, apart from standard tropical geometry,
a certain complex extension of tropical concepts (see [31]) is used. For this reason,
in the framework of our survey we consider only quasi-algebraic exponential sums
and EA-sets. We state the main results and provide precise descriptions of the
required constructions, but we omit the proofs, with a few exceptions.

Let G ⊂ Re(Cn)∗+ be a subgroup with finitely many generators. Assume that G
contains a basis of (Cn)∗. Let EG denote the ring of exponential sums with support
in G. Next we construct an intersection theory for EA-sets with equations in EG.
To do this we determine the corresponding ring of conditions EG. The ring of
exponential sums is the direct limit of the rings EG over all subgroupsG ⊂ Re(Cn)∗+.
Correspondingly, the ring of conditions E of all EA-sets is the direct limit of the
graded commutative Z-algebras EG. In addition, E has the structure of a graded
R-algebra.

In the definition of the ring of conditions we use the intersection number I(X,Y )
of two EA-sets X and Y of total dimension n. To construct I(X,Y ) we define the
concepts of algebraic codimension codimaX and equidimensionality of an EA-setX;
see Definition 7.2.3. The algebraic codimension usually coincides with the codimen-
sion of X as an analytic subset of Cn (see Example 7.2.4). Equidimensionality is
a substitute for the concept of irreducibility. Namely, each EA-set can be repre-
sented uniquely as a finite union of equidimensional EA-sets of differing algebraic
codimensions.

Next we introduce the concept of weak density dw(X) of an equidimensional
EA-set X of algebraic codimension n; see Definition 7.2.12. The set X is infinite.
(For instance, for n = 1 it is the set of zeros of ez − 1.) The weak density of X
is an analogue of the cardinality of a zero-dimensional algebraic variety. It turns
out that if codimaX + codima Y = n, then there exists a domain of relatively full
measure U ⊂ Re Cn (see Definition 7.2.7) such that dw(X ∩ (z + Y )) is constant
when Re z ∈ U . We put

I(X,Y ) = dw(X ∩ (z + Y )),

and call it the intersection number of the EA-sets X and Y . The quantity I is
symmetric and invariant under the action z : X 7→ z +X of the additive group Cn

+

of Cn. In the definitions of weak density and the intersection number we use the
group G such that the equations of X and Y belong to EG. The values dw(X)
and I(X,Y ) belong to a certain subgroup of R+. The union of these subgroups
over all subgroups G ⊂ Re(Cn)∗+ is the whole of R. In addition, dw(X) and I(X,Y )
are independent of the choice of G for any fixed X and Y .

The definition of the ring of conditions is modelled on [11] and [10]. We say
that two equidimensional EA-sets X and Y with algebraic codimensions k ⩽ n
are equivalent if I(X,Z) = I(Y, Z) for each equidimensional EA-set Z of algebraic
codimension n − k. All EA-sets of algebraic codimension > n are also said to
be equivalent. The sets of equivalence classes of algebraic codimension k form
a homogeneous component of the graded commutative semiring with operations
defined as follows.

Fix the equivalence classes containing the equidimensional EA-sets X and Y .
Then there exists a domain U ⊂ Re Cn of relatively full measure, which depends
on X and Y , such that the following conditions hold for any z ∈ U + Im Cn:
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1) the EA-sets X ∩ (z + Y ) are equidimensional;
2) their equivalence classes are equal and do not depend on the choice of X or Y ;
3) if codimaX = codima Y , then the equivalence classes of the EA-setsX∪(z+Y )

are equal.
Let ι(Z) denote the equivalence class of an EA-set Z. Taking an arbitrary

z ∈ U + Im Cn, we put

ι(X) + ι(Y ) = ι(X ∪ (z + Y )) and ι(X) · ι(Y ) = ι(X ∩ (z + Y )).

We use tropical techniques to verify that the operations of addition and multipli-
cation are well defined; see § 7.3. Let a, b, and c be equivalence classes in the same
codimension. Then, by definition, the equality a + c = b + c implies that a = b.
Consider the Grothendieck group EG,k of the semigroup of equivalence classes of
codimension k, and let EG = EG,0 + EG,1 + · · · + EG,n denote the corresponding
commutative graded Z-algebra. We say that EA-sets with the same image in the
ring of conditions are numerically equivalent. Below we list the main properties of
the ring of conditions EG = EG,0 + · · ·+ EG,n:

(R1) EG,0 = Z;
(R2) the weak density of an EA-set is constant on numerical equivalence classes;

there exists a ϖ(G) ∈ Z such that the map dw : EG,n → ϖ(G)Z is a group isomor-
phism;

(R3) when p + q = n, multiplication defines a non-degenerate pairing EG,p ×
EG,q → EG,n

dw−−→ ϖ(G)Z;
(R4) the algebra EG ⊗Z Q is generated by the elements EG,1⊗Z Q (hence the ring

of conditions E is generated by the images of exponential hypersurfaces);
(R5) when G = Zn, EG is the ring of conditions of the complex torus (C \ {0})n.
The structure of the ring of conditions of the complex torus can be described in

various ways in terms of the geometry of polytopes with vertices at integer lattice
points (Newton polytopes); see §§ 4.2.1 and 6.3.1 in this survey, and also [7], [32],
and [31]. These descriptions remain valid after passing to the ring of conditions E ,
provided that we drop the condition that the polytopes should be lattice polytopes.
We present one such description in § 7.3 (Theorem 7.3.13).

By definition, if X1, . . . , Xk are EA-sets such that the sum of their algebraic
codimensions is n, then their intersection number is dw(X1 · · ·Xk), where Xi

is the image of the EA-set Xi in the ring of conditions (cf. Definition 7.2.15).
When k = n, let Xi be a hypersurface with equation fi = 0. Then, in the
quasi-algebraic case, the intersection number of the divisors X1, . . . , Xn is equal
to the mixed volume of the Newton polyhedra of the EA-set fi. This can be viewed
as an analogue of the Kushnirenko–Bernstein formula (also called the BKK or
Bernstein–Kushnirenko–Khovanskii formula) for the number of solutions of a poly-
nomial system of equations; see Theorem 2.2.1. It refines the previously known
results [27], [38].

7.2. Densities and intersections of EA-sets.

7.2.1. Models and windings. To define the weak density of an EA-set (see Defini-
tion 7.2.12) we regard it as the intersection of an algebraic variety, called a model
of the EA-set, with the multidimensional winding on the complex torus; see Defi-
nitions 7.2.1 and 7.2.2.
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Let G ⊂ Re(Cn)∗+ be a subgroup with a finite number of generators. Assume
that G contains a basis of the space Re(Cn)∗. Let EG denote the ring of exponential
sums with support in G. For any z ∈ Cn we take ω(z) to be the character of G
defined by ω(z) : g 7→ e⟨z,g⟩. Let T be the torus of characters of G. In this way we
obtain an embedding of groups ω : Cn

+ → T.

Definition 7.2.1. We call the image ω(Cn) of ω the standard winding on the
torus T, and ω : Cn → T the standard winding map.

The standard winding on the torus is dense in the Zariski topology. Hence
ω∗ : C[T] → EG is a ring isomorphism.2

Definition 7.2.2. Let I be the ideal of EG generated by the equations of an
EA-set X. Let κ(X) ⊂ T denote the zero locus of the ideal (ω∗)−1I ⊂ C[T].
We call κ(X) a model of the EA-set X.

The EA-set X coincides with ω−1κ(X). Conversely, to an arbitrary algebraic
variety M ⊂ T there corresponds the EA-set ω−1M . We have M = κ(ω−1M),
so that M is a model of the EA-set ω−1M . Calculating the ring EG is based on
the fact that the map M 7→ ω−1M extends to a homomorphism of the ring of
conditions of the torus T onto EG; see § 7.3.

Definition 7.2.3. Setting codimaX = codimκ(X), we call codimaX the algebraic
codimension of the EA-set X. If the variety κ(X) is equidimensional (that is, it is
made up of irreducible components of equal dimension), then X is also said to be
equidimensional.

Increasing the group G preserves codimension and the property of equidimen-
sionality of the model κ(X) for a fixed EA-set X (by contrast to dimension and
the property of irreducibility). Each EA-set is a union of a finite number of equidi-
mensional EA-sets of differing algebraic codimensions. In what follows we assume
by default that each EA-set under consideration is equidimensional.

Example 7.2.4 (see [28], [68], and [6]). Assume that the EA-set X is given by
equations f = g = 0. If f and g have no common divisor in EG, then codimaX = 2;
otherwise codimaX = 1. In particular, 0 ∈ C treated as the EA-set given by the
equations ez−1 = e

√
2 z−1 = 0 has algebraic codimension 2. Thus, the codimension

of an analytic set X can be lower than codimaX. Let (X, z) be the irreducible
germ of an EA-set X at z ∈ X. If (X, z) has lower codimension than codimaX,
then the germ is said to be atypical. It is known that each atypical germ of an EA-set
lies in a proper affine subspace of Cn. In particular, each atypical component of an
EA-set of algebraic codimension 2 in C2 is an affine line. In addition, it is known
that the set of minimal affine subspaces containing atypical components is small in
a certain sense.

Let X be an EA-set given by equations in the ring EG, let T be the character
torus of the group G, and let κ(X) ⊂ T be a model of the EA-set X. For any t ∈ T
we write Xt = ω−1(tκ(X)). The variety tκ(X) ⊂ T is a model of the EA-set Xt.

2The practice of viewing exponential sums as restrictions of Laurent polynomials to a dense
winding on the torus goes back to Weyl’s celebrated paper [67].
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In this way we obtain an action of T on EA-sets defined as the zero varieties of
systems of exponential sums in the ring EG. We describe this action in detail.

Fix a basis α1, . . . , αN ofG. Then each exponential sum f ∈ EG can be expressed
uniquely as a Laurent polynomial

f(z) = P (eα1(z), . . . , eαN (z))

of the variables eα1(z), . . . , eαN (z). When t = (c1, . . . , cN ) ∈ (C\{0})N (identifying T
and (C \ {0})N ), we put

f(z) t−→ tf(z) = P (c1eα1(z), . . . , cNeαN (z)).

If the EA-set is given by equations f1 = · · · = fk = 0, then the action of t takes it
to the EA-set given by tf1 = · · · = tfk = 0. This action of T is an extension of the
shift action of Cn on exponential sums and EA-sets. Using just this action of T,
we can consistently define the weak density of an EA-set of codimension n and
then the intersection number I(X,Y ) of two EA-sets X and Y of complementary
codimension; see Theorem 7.2.11 and Definition 7.2.15 below. The definitions of
weak density and the intersection number use the given group G. However, it
follows from Theorems 7.2.14 and 7.3.1 that these quantities are independent of
the choice of this group. In what follows we assume that G ⊂ Re(Cn)∗ is fixed.

Below we use the following convention on the multiplicity of points in EA-sets.
Let M =

⋃
i

miMi, where the Mi are the irreducible components of a model M of

an EA-set X of algebraic codimension n, and let z ∈ X. We call z a normal point
in X if there exists a k such that

(i) ω(z) ⊂Mk \
⋃

i̸=k

Mi;

(ii) the point ω(z) ∈Mk is non-singular;
(iii) the standard winding intersects Mk transversally at ω(z).
We assign multiplicity mk to the normal point z. The property of x ∈ X being

a normal point and the value of its multiplicity are independent of the choice of
a model M of the EA-set X. If we assign fixed multiplicity K to all isolated
points in X that are not normal, then the weak densities and intersection numbers
(to be defined below) of the EA-set will be independent of the choice of K. For
completeness, we assign multiplicity zero to all isolated points of the EA-set that
are not normal.

7.2.2. The density and intersection number of EA-sets. We need the following def-
initions.

Definition 7.2.5. Let Br be the ball with radius r and centre at the origin in
a finite-dimensional Euclidean space E, let σn be the volume of an n-dimensional
ball with radius 1, and let Y ⊂ E be a discrete set of points with non-negative
multiplicity. Let N(Y, r) be the cardinality of Y ∩Br. If the limit

lim
r→∞

N(Y, r)
σnrn

exists, then we call it the n-density of Y and denote it by dn(Y ).
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Note that the n-density of a set depends on the choice of a metric in E.

Example 7.2.6. If X ⊂ C is an EA-set given by an equation f(z) = 0, then
the 1-density d1(X) exists and is equal to p/(2π), where p is the perimeter of the
Newton segment of the exponential sum f .

Definition 7.2.7. Let I = {I} be a finite set of proper subspaces of a real vector
space E. Put

BI = E \
⋃
I∈I

I

and let BI,1, BI,2, . . . be the connected components of BI. When 0 < R ∈ R, let BR
I

denote the subset of E consisting of the points lying at a distance ⩾ R from
⋃

I∈I

I.

We call a domain U ⊂ E that contains a subdomain of the form BR
I a domain of

relatively full measure (an RFD in what follows) with base
⋃

I∈I

I.

Here are some consequences of Definition 7.2.7.

Corollary 7.2.8. 1) Unions and intersections of RFDs are RFDs.
2) The fact that a domain is an RFD is independent of the choice of metric in E .
3) If a subspace L ⊂ E does not lie in the base of an RFD U , then U ∩ L is

an RFD in L.

Definition 7.2.9. 1) Let Z ⊂ E be a lattice in E with positive integer multiplic-
ity m(Z ), and let X ⊂ E be a set of points with multiplicities. A set X ⊂ E
is called an ε-perturbation of the translated lattice z + Z if (a) X lies in the
ε-neighbourhood (z + Z )ε of this translated lattice, and (b) the ε-neighbourhood
of each point x ∈ z + Z contains precisely m(Z ) points from X.

2) If X1, . . . , Xm are ε-perturbations of translated lattices zj + Zj , then⋃
1⩽j⩽m

Xj

is called an ε-perturbation of the union of translated lattices
⋃

1⩽j⩽m

(zj + Zj).

Corollary 7.2.10. Let X be an ε-perturbation of the union of translated lattices
{zj + Zj}. If rk Zj = n for each j , then the n-density dn(X) exists and is equal to∑

j

dn(Zj).

Below we claim that:
(i) (Theorem 7.2.11) for ‘almost all sufficiently large’ t ∈ T the shifts tX of

a quasi-algebraic EA-set X of algebraic codimension n can be approximated by
unions of translations of lattices in a fixed finite set of sublattices in the space
Im Cn; the n-densities of the EA-sets tX are defined and equal to one another;

(ii) (Theorem 7.2.14) if X and Y are quasi-algebraic EA-sets such that the sum
of their algebraic codimensions is n, then for ‘almost all sufficiently large’ z ∈ Cn

the EA-sets (z+X)∩Y are equidimensional; they all have algebraic codimension n
and the same weak density.
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In what follows we use this notation: T is the Lie algebra of the torus T, Re T and
Im T are the real and imaginary subspaces of T, and exp: T → T is the exponential
map.

Theorem 7.2.11. Let codimaX = n. Then there is a set of subspaces I = {I ⊂
Re T} and there are finite systems of full rank lattices {Li,j ⊂ Im Cn | j = 1, 2, . . . }
corresponding to the connected components BI,i (see Definition 7.2.7) such that

1) for each ε there exists an R > 0 such that if t ∈ exp(BR
I,i + Im T),

then the EA-set Xt is an ε-perturbation of the union of translated lattices
z1(t) + Li,1, z2(t) + Li,2, . . . , where the functions zj(t) are continuous;

2) the n-density dn(Xt) is independent of the choice of a connected compo-
nent BI,i containing Re log t.

Definition 7.2.12. When t ∈ exp(BR
I,i + Im T), we put dw(X) = dn(Xt) and

call dw(X) the weak density of X. If dn(X) exists and is equal to dw(X), then
we call dn(X) the density of the EA-set X.

Corollary 7.2.13. The density and weak density of an EA-set are preserved under
the shift action of Cn , that is, dw(X) = dw(z +X).

Theorem 7.2.14. Let codimaX + codima Y = n. Then there exists I = {I ⊂
Re Cn} such that if R is sufficiently large, then the following conditions hold for all
z ∈ BR

I + Im Cn :
(i) the EA-sets (z +X) ∩ Y are equidimensional;
(ii) codima((z +X) ∩ Y ) = n;
(iii) the weak densities dw((z +X) ∩ Y ) are equal to one another.

Definition 7.2.15 (the intersection number of EA-sets). Let BR
I ⊂ Re Cn be the

RFD from Theorem 7.2.14. Then we put

I(X,Y ) = dw

(
(z +X) ∩ Y

)
for z ∈ BR

I + Im Cn.

Corollary 7.2.16. For any z, w ∈ Cn

I(z +X,w + Y ) = I(X,Y ).

Recall that, by definition, the intersection number I(X1, . . . , Xn) of exponential
hypersurfaces X1, . . . , Xn is dw(X1 · · ·Xn), where Xi is the image of the EA-set Xi

in the ring of conditions (cf. Definition 7.2.15).

Theorem 7.2.17. Let Xi = {z ∈ Cn : fi(z) = 0, i = 1, . . . , n} be exponential
hypersurfaces. Then

I(X1, . . . , Xn) =
n!

(2π)n
MV(∆1, . . . ,∆n),

where MV(∆1, . . . ,∆n) is the mixed volume of the Newton polytopes of the expo-
nential sums fi .
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7.3. EA-sets and tropical algebraic geometry. In this subsection we explain
the relationship between the notions of weak density and intersection number for
EA-sets and tropical algebraic geometry. It turns out that these quantities depend
only on the tropicalizations of models of EA-sets. We present a surjective map of the
ring of conditions of the complex torus onto the quasi-algebraic ring of conditions EG

and establish a connection between EG and the ring of convex polytopes. We gave
all necessary tropical definitions in § 4.2.

Let H be an n-dimensional subspace of Re T. Fix a Euclidean metric in H. In
what follows we construct a linear functional Y on the space of tropical fans of
codimension n in Re T. The value of this functional on a tropical fan K can be
viewed as an ‘intersection number’ of the fan and H. We present the definition
of Y immediately after the following statements.

Theorem 7.3.1. Let X be an EA-set given by equations in the ring EG , let
codimaX = n, let T be the character torus of G, and let trop(X) ⊂ Re T be the
tropicalization of a model of the EA-set X . We put H = dω(Re Cn) ⊂ Re T,
where ω is the standard winding map (see Definition 7.2.1). Fix the Euclidean
metric in H induced by the metric in Re Cn . Then

dw(X) = Y (trop(X)).

Corollary 7.3.2. If the models of EA-sets X and Y have the same tropicalization,
then dw(X) = dw(Y ).

Theorem 7.3.3. Let codimaX + codima Y = n. Then

I(X,Y ) = Y (trop(X) · trop(Y )),

where trop(X) · trop(Y ) is the product of tropical fans (defined in § 4.2.1).

Corollary 7.3.4. If the models of the EA-sets X and Y have the same tropical-
ization, then I(X,Z) = I(Y,Z) for each EA-set Z .

We turn to the definition of Y .
Let S ⊂ Re T be a rational subspace (that is, spanned by vectors in the integer

lattice) of codimension n. Consider the image π(C) of the unit cube C in H under
the projection π : H → Re T/S and put η(H,S) = Vol(π(C)), where the volume
form in Re T/S is chosen in such a way that the fundamental cube in the integer
quotient lattice has volume 1.

Let K be a tropical fan of codimension n in Re T and let supp K =
⋃

K∈K

K.

For any K ∈ K , if the minimal subspace Re T containing H and K is proper, then
we denote it by IH,K . The set of subspaces of the form IH,K is denoted by I = {I}.
Let u ∈ BJ (see Definition 7.2.7). Then H ∩ (u+ supp K ) is finite and consists of
points of the form H ∩ (u + K), where K ∈ K is a cone of codimension n. For
u ∈ BJ we put

Yu(K ) =
∑

K∈K ,H∩(u+K) ̸=∅

η(H,TK)w(K),

where TK is the subspace of Re T spanned by K, and where w(K) is the weight
of K in the tropical fan K . The value Yu(K ) of the functional is independent of
the choice of u ∈ BJ. Thus, the functional Y is well defined.
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The independence just mentioned can be explained as follows. Choose a ratio-
nal subspace of Re T that is close to H, and introduce in it a Euclidean metric
close to that on H. Then the claim reduces to the case of a rational subspace
because Yu(K ) depends continuously on the Euclidean subspace H. Suppose
that H is a rational space. We view it as a tropical fan with weight 1. Then Yu(K )
differs from the intersection number of the tropical varieties K and H by a constant
factor (see Remark 4.2.2 in § 4.2.1). Therefore it is independent of the translation u.

Now we present a few known facts about the ring of conditions of the com-
plex torus and tropicalizations of algebraic varieties. For this we use the following
notation:
• RT is the ring of conditions of T;
• r(M) is the numerical equivalence class of M ;
• TropT is the ring of tropical fans in Re T;
• trop(M) is the tropicalization of M .

Assertion 7.3.5. For any pair of varieties M,N ⊂ T there exists an algebraic
hypersurface D ⊂ T such that for each t /∈ D

(i) r
(
M ∩ (tN)

)
= r(M) · r(N),

(ii) trop
(
M ∩ (tN)

)
= trop(M) · trop(N).

Assertion 7.3.6. The map trop is constant on numerical equivalence classes and
it is a ring isomorphism ι : RT → TropT .

Recall that the amoeba of an algebraic variety M is the image of M under the
map Re log : T → Re T.

Assertion 7.3.7 (for instance, see [30]). The amoeba of an algebraic variety M
lies at a finite distance from the Bergman cone supp trop(M) of M .

A significant step towards verifying that the ring of conditions EG is well defined
is proving that multiplication of numerical equivalence classes is well defined. The
result we need is as follows.

Lemma 7.3.8. Let X and Y be equidimensional EA-sets. Then there exists
an RFD U ⊂ Re Cn such that for each EA-set Z with algebraic codimension
n− codimaX − codima Y the intersection numbers I(X ∩ (z + Y ), Z) are the same
for any z ∈ U + Im Cn .

Proof. Let ω : Cn → T be the standard winding map (see Definition 7.2.1) and
let M , N , and P be models of the EA-sets X, Y , and Z, respectively. Then the
variety M ∩ (ω(z)N) is a model of the EA-set X ∩ (z + Y ). From Theorem 7.3.3
we obtain

I
(
X ∩ (z + Y ), Z

)
= Y

(
trop

(
M ∩ (ω(z)N)

)
· trop(P )

)
.

Consider the hypersurface D in Assertion 7.3.5 and let I = {I ⊂ Re T} be a set
of rational subspaces such that their union contains the support of the tropical
fan of D. Since ω is a dense winding, it follows that dω(Re Cn) ̸⊂

⋃
I∈I

I. Therefore,

U = (dω)−1(BR
I ) is an RFD; see Definition 7.2.7 and Corollary 7.2.8, 3). If R is



170 B.Ya. Kazarnovskii, A.G. Khovanskii, and A. I. Esterov

sufficiently large, then D ∩ BR
I = ∅ by Assertion 7.3.7. Hence ω(z) /∈ D for each

z ∈ U + Im Cn. Let z ∈ U + Im Cn. Then it follows from Assertion 7.3.5, (ii) that

trop
(
M ∩ (ω(z)N)

)
= trop(M) · trop(N).

Hence
I
(
X ∩ (z + Y ), Z

)
= Y

(
trop(M) · trop(N) · trop(P )

)
, (7.1)

that is, I
(
X ∩ (z + Y ), Z

)
is independent of z ∈ U + Im Cn. □

For a model M of an EA-set X let M eas denote the image of X in EG.

Theorem 7.3.9. There exists a surjective ring homomorphism s : TropT → EG

such that
M eas = s(trop(M)) for all M ⊂ T.

Proof. Theorem 7.3.3 states that

I(M eas, P eas) = Y
(
trop(M), trop(P )

)
,

I(N eas, P eas) = Y
(
trop(N), trop(P )

)
.

Hence, if trop(M) = trop(N), then the EA-sets M eas and N eas are numerically
equivalent. Thus the set-theoretic map s : TropT → EG exists. The fact that s is
a ring homomorphism follows from (7.1). □

Corollary 7.3.10. The ring of conditions EG is generated by the images of expo-
nential hypersurfaces.

Proof. The ring of conditions of a torus is known to be generated by the numerical
equivalence classes of algebraic hypersurfaces. It follows from Assertion 7.3.6 and
Theorem 7.3.9 that EG is a quotient ring of the ring of conditions RT. If a graded
ring is generated by the elements of degree 1, then its quotient rings inherit this
property. □

Throughout the remainder of this subsection we rely on results from § 6. The
formulations of the statements below are nonetheless fully self-contained.

We extend Y to the space of all tropical fans by setting it equal to zero on each
homogeneous fan of codimension distinct from n. (We say that a k-dimensional fan
of cones is homogeneous if each of its cones is a face of a k-dimensional cone.) On
the space of tropical fans we consider the symmetric bilinear form

BY (K ,L ) = Y (K ·L ).

The kernel JY of BY is an ideal of the ring TropT.

Corollary 7.3.11. The ring of conditions EG is isomorphic to the quotient ring
TropT /JY . In other words, the homomorphism s in Theorem 7.3.9 can be described
as the factorization TropT → TropT /JY .

Corollary 7.3.12. The product operation in EG defines a non-degenerate pairing
EG,p × EG,n−p → R.
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In conclusion, we present a geometric description of EG. Consider the Newton
polytopes of exponential sums in EG, that is, convex polytopes in Re(Cn)∗ with
vertices at points in G. We denote by H the vector space of virtual convex poly-
topes generated by them. Let S(H ) =

∑
m⩾0

Sm be the symmetric algebra of H and

let I denote the linear functional on Sn whose value at the product of polytopes
Λ1 · · ·Λn is the mixed volume of the Λi. With I we associate the homogeneous
ideal J ⊂ S(H ) generated by the following sets of generators: 1) ker I, 2)

∑
m>n

Sm,

and 3) {s ∈ Sk | s · Sn−k ⊂ ker I, k = 1, . . . , n− 1}.

Theorem 7.3.13. For an exponential sum f ∈ EG let ∆f denote its Newton
polytope and Xf the exponential hypersurface f = 0. Then the correspondence
Xf → ∆f extends to a ring isomorphism EG ⊗Z R → S(H )/J .

7.4. The exponential BKK theorem. Theorem 7.4.1 below can be regarded
as a tropical version of the BKK theorem (see Theorem 3.1.3), which arises in the
context of quasi-algebraic exponential sums. It is used to derive the exponential
BKK formula (Theorem 7.2.17). The proof of Theorem 7.4.1 reduces to using the
tropical BKK theorem and Assertion 2.1.7. We skip the details of the proofs.

Consider the space H∗ dual to H and endowed with the dual Euclidean metric.
We identify it with (Re T)∗/H⊥, where (Re T)∗ is the space of linear functionals
on Re T and H⊥ is the orthogonal complement to H. For a subset A of (Re T)∗

let AH denote its projection onto the quotient (Re T)∗/H⊥.

Theorem 7.4.1. Let ∆1, . . . ,∆n be convex polytopes in (Re T)∗ with vertices in
the integer lattice and let K1, . . . ,Kn ⊂ Re T be the dual tropical fans of the ∆i

(see Definition 3.3.2). Then

Y (K1 · · ·Kn) = c(H) MV(∆H
1 , . . . ,∆

H
n ),

where MV is the mixed volume in H∗ and c(H) is a constant depending on the
Euclidean space H .

Theorem 7.4.1 yields the Kushnirenko–Bernstein formula for quasi-algebraic
exponential sums (Theorem 7.2.17). Indeed, letX1, . . . , Xn be quasi-algebraic expo-
nential hypersurfaces with equations fi = 0, and letMi be models of the EA-setsXi.
These models are algebraic hypersurfaces. Let Ki be their tropicalizations. It fol-
lows from the above that

I(X1, . . . , Xn) = Y (K1 · · ·Kn).

Using Theorem 7.4.1, we obtain

I(X1, . . . , Xn) = c(n) MV(∆1, . . . ,∆n),

where the ∆i are the Newton polytopes of the exponential sums fi. The value
n!/(2π)n of the coefficient c(n) is easy to find by looking at the simplest case where
fi = ezi − 1.
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